搭载给水管的宽幅流线型钢箱梁涡振性能及抑振措施研究

李春光,李赫佳,陈赛,韩艳

振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 199-206.

PDF(3700 KB)
PDF(3700 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 199-206.
论文

搭载给水管的宽幅流线型钢箱梁涡振性能及抑振措施研究

  • 李春光,李赫佳,陈赛,韩艳
作者信息 +

Research on vortex vibration performance and vibration suppression measures of wide streamlined steel box girder with water supply pipe

  • LI Chunguang,LI Hejia,CHEN Sai,HAN Yan
Author information +
文章历史 +

摘要

为研究给水管不同设置位置对宽幅流线型钢箱梁的涡振性能影响及涡振抑制措施,以某大跨度扁平钢箱梁斜拉桥为研究对象,制作缩尺比为1:50的钢箱梁刚性节段模型进行风洞试验和数值模拟计算。首先对比分析了风攻角为0°、±3°时,给水管设置在主梁风嘴内(I型)和设置在桥面上(II型)两种不同断面形式的主梁涡振特性;并采用数值模拟探究了给水管对主梁涡振性能影响的作用机理。其次,研究了结构阻尼比对I型断面主梁涡振性能的影响;最后,通过试验测试了栏杆透风率、栏杆抑流板等气动措施对I型断面主梁涡振性能的影响。实验结果表明:给水管是涡振敏感构件,对于I型断面,风攻角为-3°时,主梁未出现涡振现象;风攻角为0°时,有小幅涡振响应;风攻角为+3°时,出现明显的涡振现象; II型断面主梁无涡振现象发生。数值模拟结果显示,给水管放置在主梁外部可以有效降低上表面旋涡的尺寸,从而抑制涡振的产生。增大结构阻尼比可以有效抑制主梁的涡振;改变栏杆透风率抑振效果不明显;设置抑流板对抑振效果明显。

Abstract

In order to study the effect of different locations of water supply pipes on the vortex-induced vibration (VIV) performance of wide streamline steel box girder and the suppression measures of VIV, a large-span flat steel box girder cable-stayed bridge was taken as the research object, and a rigid section model of steel box girder with a scale of 1:50 was made for wind tunnel tests and numerical simulation calculations. Firstly, the VIV characteristics of the main beam were compared and analyzed when the wind attack angle was 0 ° and ± 3 °, with the water supply pipe installed in the main beam wind faring (Type I) and on the bridge deck (Type II); And the mechanism of the effect of water supply pipes on the VIV performance of the main beam was explored through numerical simulation. Secondly, the influence of structural damping ratio on the VIV performance of I-shaped section main beams was studied; Finally, the effects of aerodynamic measures such as railing ventilation rate and railing flow suppression plate on the VIV performance of the I-section main beam were tested through experiments. The experimental results show that the water supply pipe is a vortex sensitive component, and for the I-shaped section, when the wind attack angle is -3 °, there is no VIV phenomenon in the main beam; When the wind attack angle is 0 °, there is a small amplitude of vortex response; When the wind attack angle is+3 °, there is a significant VIV phenomenon; There is no VIV phenomenon in the main beam of Type II section. The numerical simulation results show that placing the water supply pipe outside the main beam can effectively reduce the size of the upper surface vortex, thereby suppressing the generation of VIV. Increasing the structural damping ratio can effectively suppress the VIV of the main beam; The effect of changing the ventilation rate of the railing to suppress vibration is not significant; Setting up a flow suppression plate has a significant effect on vibration suppression.

关键词

给水管 / 涡振性能 / 风洞试验 / 数值模拟 / 气动措施 / 阻尼比 / 抑流板 / 栏杆

Key words

water supply pipe / vortex vibration performance / wind tunnel test / numerical simulation / aerodynamic measures / damping ratio / flow suppression plate / railing

引用本文

导出引用
李春光,李赫佳,陈赛,韩艳. 搭载给水管的宽幅流线型钢箱梁涡振性能及抑振措施研究[J]. 振动与冲击, 2024, 43(4): 199-206
LI Chunguang,LI Hejia,CHEN Sai,HAN Yan. Research on vortex vibration performance and vibration suppression measures of wide streamlined steel box girder with water supply pipe[J]. Journal of Vibration and Shock, 2024, 43(4): 199-206

参考文献

[1] 刘君,廖海黎,万嘉伟,等.检修车轨道导流板对流线型箱梁涡振的影响[J].西南交通大学学报,2015,50(05):789-795. LIU Jun, LIAO Hai-li, WAN Jia-wei, et al. Effect of guide vane beside maintenance rail on vortex-induced vibration of streamlined box girder[J].Journal of Southwest Jiaotong University, 2015, 0(05): 89-795. [2] 刘志文,江智俊,黎晓刚,等.流线型钢箱梁涡激振动机理与气动控制措施[J].中国公路学报,2022,35(11):133-146. LIU Zhi-wen, JIANG Zhi-jun, LI Xiao-gang, et al. Study on mechanism and aerodynamic control measures for vortex-induced vibration of a streamlined-box steel girder. China Journal of Highway and Transport, 2022,35(11):133-146. [3] 葛耀君,赵林,许坤.大跨桥梁主梁涡激振动研究进展与思考[J].中国公路学报,2019,32(10):1-18. GE Yao-jun, ZHAO Lin, XU Kun. Review and Reflection on Vortex-induce Vibration of Main Girders of Long-span Bridges[J]. China Journal of Highway and Transport, 2019, 32(10):1-18. [4] 胡传新,赵林,周志勇,等.流线型闭口箱梁抑流板抑制涡振机理研究[J].振动工程学报,2020,33(01):1-11. HU Chuan-xin, ZHAO Lin, ZHOU Zhi-yong, et al. Suppressing mechanism of spoilers on vortex-induced vibrations around a streamlined closed-box girder based on characteristics of aerodynamics forces and flow field. Journal of Vibration Engineering, 2020, 33(01);1-11. [5] 许福友,林志兴,李永宁,等.气动措施抑制桥梁涡振机理研究[J].振动与冲击,2010,29(01):73-76+238. XU Fu-you, LIN Zhi-xing, LI Yong-ning, et al. Vortex resonance depression mechanism of a bridge deck with aerodynamic measures. Journal of Vibration and Shock, 2010, 29(01):73-76+238. [6] 郭增伟,赵林,葛耀君,等.基于桥梁断面压力分布统计特性的抑流板抑制涡振机理研究[J].振动与冲击,2012,31(07):89-94+117. GUO Zeng-wei, ZHAO Lin, GE Yao-jun, et al. Mechanism analysis for vortex-induced vibration reduction of a flat streamlined steel box-shaped girder with airflow-suppressing board based on statistical property of surface pressure, Journal of Vibration and Shock, 2012, 31(07):89-94+117. [7] 崔欣,王慧贤,管青海,等.栏杆透风率对主梁涡振特性影响的风洞试验[J].长安大学学报(自然科学版),2018,38(03):71-79. CUI Xin, WANG Hui-xian, GUAN Qing-hai, et al. Wind tunnel experimental on influence of railing ventilation rate on characteristics of vortex-induced vibration of main girder. Journal of Chang'an University(Natural Science, 2018, 38(03): 71-79. [8] 陈政清,牛华伟,李春光.并列双箱梁桥面风致涡激振动试验研究[J].湖南大学学报(自然科学版),2007(09):16-20. CEHN Zheng-qing, NIU Hua-wei, LI Chun-guang. Experimental Study on Wind-Induced Vortex Shedding of Parallel Box-Girder Bridge. Journal of Hunan University (Natural Sciences), 2007(09):16-20. [9] 孙延国,廖海黎,李明水.基于风洞试验的大跨度悬索桥涡振性能研究及评价[J].实验流体力学,2012,26(04):27-32. SUN Yan-guo, LIAO Hai-li , LI Ming-shui. Analysis and evaluation of vortex induced vibration performance for long span suspension bridge based on wind tunnel testing. Journal of Experiments in Fluid Mechanics, 2012, 26(04):27-32. [10] 黄林,董佳慧,王骑,等.外置纵向排水管对扁平钢箱梁涡振性能的影响及气动控制措施研究[J].振动与冲击,2022,41(13):43-51. HUANG Lin, DONG Jia-hui, WANG Qi, et al, Effects of external longitudinal drainage pipe on VIV performance of flat steel box girder and aerodynamic control measure. Journal of Vibration and Shock, 2022, 41(13):43-51. [11] 祝志文,石亚光,颜爽.带防撞栏杆扁平箱梁高阶模态涡激振动的CFD研究[J].振动与冲击,2021,40(10):228-234. ZHU Zhi-wen, SHI Ya-guang, YAN Shuang. Investigation on vortex-induced high-mode vibration of flat box girders with crash barriers based on CFD [J]. Journal of Vibration and Shock, 2021, 40(10):228-234. [12] PAIDOUSSIS M P, PRICE S J, LANGRE E D. Fluid-structure Interactions: Cross-flow-induced Instabilities[M]. Cambridge University Press, 2011. [13] HU C X, ZHAO L, GE Y J. Mechanism of Suppression of Vortex-induced Vibrations of a Streamlined closed-box Girder Using Additional Small-scale Components[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 189: 314-331. [14] JTG/T 3360-01-2018, 公路桥梁抗风设计规范[S]. JTG/T 3360-01-2018, Wind-resistent Design Specification for Highway Bridges[S]. [15] 华旭刚,黄智文,陈政清.大跨度悬索桥的多阶模态竖向涡振与控制[J].中国公路学报,2019,32(10):115-124. HUA Xu-gang, HUANG Zhi-wen, CHEN Zheng-qing. Multi-mode Vertical Vortex-induced Vibration of Suspension Bridges and Control Strategy[J]. China Journal of Highway and Transport, 2019, 32(10):115-124. [16] KHALAK A,WILLIAMSON C H K. Dynamics of a hydro elastic cylinder with very low massand damping [J].Journal of Fluids and Structures, 1996, 10(5): 455-472.

PDF(3700 KB)

Accesses

Citation

Detail

段落导航
相关文章

/