超声导波目标模式的激励方法研究

丁涛涛1,2,3,郭宇1,2,项延训3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 20-26.

PDF(1559 KB)
PDF(1559 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 20-26.
论文

超声导波目标模式的激励方法研究

  • 丁涛涛1,2,3,郭宇1,2,项延训3
作者信息 +

A studyon an excitation method of the target mode of ultrasonic guided waves

  • DING Taotao1,2,3,GUO Yu1,2,XIANG Yanxun3
Author information +
文章历史 +

摘要

超声导波检测过程中不同模态导波信号与各类损伤之间的相互作用存在差异性,直接影响了损伤检测及定位成像结果的可靠性。因此,系统研究导波目标模式的激励方法从而获得理想的导波信号,有助于实现多类型损伤的精准检出以及获得高分辨率定位成像结果。本文基于理论分析、有限元仿真和实验测量开展了超声导波目标模式的激励方法研究。理论分析导波目标模式激励的条件,并且构建二维多物理场仿真模型进行导波目标模式激励方法的验证。实验过程中将梳状换能器与PZT压电片进行比较分析,结果表明,梳状换能器相较于PZT压电片具有良好的模式选择能力。另外,设计制作四分之一全向和全向梳状换能器,使其进行目标模式导波信号激励的同时实现传播方向的调控。

Abstract

In the process of ultrasonic guided waves detection, the interaction between different modes of guided waves and various types of damage is different, which directly affects the reliability of damage detection and localization imaging. Therefore, the excitation method of target mode of guided waves is systematically studied to obtain the ideal guided waves, which is helpful to realize the accurate detection of multi-types damage and obtain high resolution positioning imaging. In this paper, the excitation method of target mode of guided waves is studied in theoretical analysis, finite element simulation and experimental measurement. The excitation condition of target mode of guided waves is analyzed theoretically, and two-dimensional multi-physical field simulation models are constructed to verify the method. The comb transducer and PZT wafer were compared during the experiment of guided waves. The results show that the comb transducer has better mode selection ability than PZT wafer. In addition, the quarter omnidirectional and omnidirectional comb transducers are designed to excite the target mode and control the propagation direction of guided waves.

关键词

超声导波 / 目标模式 / 梳状换能器 / 声场调控

Key words

ultrasonic guided waves / target mode / comb transducer / sound field control

引用本文

导出引用
丁涛涛1,2,3,郭宇1,2,项延训3. 超声导波目标模式的激励方法研究[J]. 振动与冲击, 2024, 43(4): 20-26
DING Taotao1,2,3,GUO Yu1,2,XIANG Yanxun3. A studyon an excitation method of the target mode of ultrasonic guided waves[J]. Journal of Vibration and Shock, 2024, 43(4): 20-26

参考文献

[1] Raghavan A. Guided-wave structural health monitoring [D]. 2007. [2] Mitra M, Gopalakrishnan S. Guided wave based structural health monitoring: A review [J]. Smart Materials and Structures, 2016, 25(5): 053001. [3] 刘增华, 冯雪健, 任捷, 等. 基于频率-波数分析的激光Lamb波传播特性试验研究 [J]. 振动与冲击, 2019, 38(22): 70-78. LIU Zeng-hua, FENG Xue-jian, REN Jie, et al. Experimental study on the propagation characteristics of laser-induced Lamb waves based on frequency-wavenumber analysis [J]. Journal of Vibration and Shock, 2019, 38(22): 70-78. [4] Zhu Y, Zeng X W, Deng M X, et al. Detection of nonlinear Lamb wave using a PVDF comb transducer [J]. NDT & E International, 2018, 93: 110-116. [5] Rose J L, Pelts S P, Quarry M J. A comb transducer model for guided wave NDE [J]. Ultrasonics, 1998, 36(1-5): 163-169. [6] Monkhouse R S C, Wilcox P D, Cawley P. Flexible interdigital PVDF transducers for the generation of Lamb waves in structures [J]. Ultrasonics, 1997, 35(7): 489-498. [7] Kannajosyula H, Lissenden C J, Rose J L. Analysis of annular phased array transducers for ultrasonic guided wave mode control [J]. Smart materials and structures, 2013, 22(8): 085019. [8] Ding T T, Wan Q, Xiang Y X, et al. Selectable Single-mode Guided Waves for Multi-type damages Localization of Plate-like Structures using Film Comb Transducers [J]. Nondestructive Testing and Evaluation, 2023, 38(1): 90–111. [9] Wang Z P, Xiong X Q, Qian L, et al. Research on the Progress of Interdigital Transducer (IDT) for Structural Damage Monitoring [J]. Journal of Sensors, 2021: 6630658. [10] White R M, Voltmer F W. Direct piezoelectric coupling to surface elastic waves [J]. Applied Physics Letters, 1965, 7(12): 314-316. [11] Viktorov I A. Rayleigh and Lamb Waves [M]. Plenum Press, New York, 1967. [12] Pelts S P, Jiao D, Rose J L. A comb transducer for guided wave generation and mode selection [C]. 1996 IEEE Ultrasonics Symposium. Proceedings. IEEE, 1996, 2: 857-860. [13] Rose J L. Ultrasonic comb transducer for smart materials [C]. 1996 Symposium on Smart Materials, Structures, and MEMS. SPIE, 1998, 3321: 636-643. [14] Wilcox P D, Cawley P, Lowe M J S. Acoustic fields from PVDF interdigital transducers [J]. IEE Proceedings-Science, Measurement and Technology, 1998, 145(5): 250-259. [15] Fu J Q, Zhou S Y, Li Z, et al. Research on guided wave excitation mode control method of comb transducer [C]. 2015 IEEE Far East NDT New Technology & Application Forum (FENDT). IEEE, 2015: 124-128. [16] 何存富, 赵华民, 吕 炎, 等. 基于PZT的新型柔性梳状表面波传感器研究 [J]. 仪器仪表学报, 2017, 38(7): 1675-1682. HE Cun-fu, ZHAO Hua-min, LV Yan, et al. New type of flexible comb Rayleigh wave sensor based on the PZT [J]. Chinese Journal of Scientific Instrument, 2017, 38(7): 1675-1682. [17] Shen Z, Chen S, Zhang L, et al. Direct-write piezoelectric ultrasonic transducers for non-destructive testing of metal plates [J]. IEEE Sensors Journal, 2017, 17(11): 3354-3361. [18] Li W B, Cho Y. Thermal fatigue damage assessment in an isotropic pipe using nonlinear ultrasonic guided waves [J]. Experimental Mechanics, 2014, 54(8): 1309-1318. [19] Li W B, Deng M X, Cho Y. Cumulative Second Harmonic Generation of Ultrasonic Guided Waves Propagation in Tube-Like Structure [J]. Journal of Computational Acoustics, 2016: 1650011. [20] 丁涛涛, 朱武军, 项延训, 等. PVDF梳状换能器接收非线性兰姆波的实验研究 [J]. 应用声学, 2019, 38(3): 301-306. DING Tao-tao, ZHU Wu-jun, XIANG Yan-xun, et al. Receiving nonlinear Lamb waves using PVDF comb transducer [J]. Journal of Applied Acoustics, 2019, 38(3): 301-306. [21] Liu F, Hashim N A, Liu Y, et al. Progress in the production and modification of PVDF membranes [J]. Journal of membrane science, 2011, 375(1-2): 1-27. [22] Kang G, Cao Y. Application and modification of poly (vinylidene fluoride) (PVDF) membranes–a review [J]. Journal of membrane science, 2014, 463: 145-165.

PDF(1559 KB)

734

Accesses

0

Citation

Detail

段落导航
相关文章

/