新型双体波浪能转换装置多自由度耦合水动力特性研究

顾兴远1,2,牛玉博1,2,郑阳1,2,何培杰1,2,陈启卷1,2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 207-214.

PDF(1694 KB)
PDF(1694 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 207-214.
论文

新型双体波浪能转换装置多自由度耦合水动力特性研究

  • 顾兴远1,2,牛玉博1,2,郑阳1,2,何培杰1,2,陈启卷1,2
作者信息 +

A studyon multi-degree-of-freedom coupled hydrodynamic characteristics of a novel two-body wave energy converter

  • GU Xingyuan1,2,NIU Yubo1,2,ZHENG Yang1,2,HE Peijie1,2,CHEN Qijuan1,2
Author information +
文章历史 +

摘要

本文提出一种新型双体波浪能转换装置,其主体由浮标和可调节质心的摆体构成。利用AQWA进行频域仿真,获取装置的水动力参数,建立含黏性项的多自由度耦合的时域模型,并将水动力参数代入模型,分别开展规则波、不规则波的仿真,研究质心位置、PTO(Power Take-Off)阻尼对装置性能的影响,最终根据真实海况划分若干不规则波并分别开展仿真,研究装置在真实海况下的发电性能。结果表明:装置可通过调节配重位置在不同周期的波浪中高效发电,且装置在小波高情况下也可以有效利用波浪能量,具有持续的发电能力。

Abstract

This paper proposes a novel two-body wave energy converter (WEC). The WEC is composed of a buoy and a pendulum with a moveable mass block. A frequency-domain model was established by AQWA to calculate the hydrodynamic parameters of the WEC. A time-domain model with viscous terms and coupling of multi-degree-of-freedom was established. And the hydrodynamic parameters were substituted into the model. Then the simulation of regular and irregular waves was carried out respectively through the time-domain model to study the effects of the mass block position and PTO damping on the WEC. Finally, according to the real sea conditions, several irregular waves are simulated respectively to study the power generation performance of the WEC under the real sea conditions. The results show that: the WEC can generate power efficiently in waves of different periods by adjusting the position of the mass block, and the WEC can effectively utilize wave energy under the condition of wavelet height and has continuous power generation capacity.

关键词

波浪能转换装置 / 双体点吸收装置 / 多自由度耦合 / 非线性模型 / 不规则波

Key words

wave energy converter / two-body point absorber / multi-DOF coupling / nonlinear model / irregular wave

引用本文

导出引用
顾兴远1,2,牛玉博1,2,郑阳1,2,何培杰1,2,陈启卷1,2. 新型双体波浪能转换装置多自由度耦合水动力特性研究[J]. 振动与冲击, 2024, 43(4): 207-214
GU Xingyuan1,2,NIU Yubo1,2,ZHENG Yang1,2,HE Peijie1,2,CHEN Qijuan1,2. A studyon multi-degree-of-freedom coupled hydrodynamic characteristics of a novel two-body wave energy converter[J]. Journal of Vibration and Shock, 2024, 43(4): 207-214

参考文献

[1] Morim J, Cartwright N, Etemad-Shahidi A, et al. A review of wave energy estimates for nearshore shelf waters off Australia[J]. International Journal of Marine Energy, 2014, 7: 57-70. [2] Illesinghe S J, Manasseh R, Dargaville R, et al. Idealized design parameters of Wave Energy Converters in a range of ocean wave climates[J]. International Journal of Marine Energy, 2017, 19: 55-69. [3] Cai Y, Huo Y, Shi X, et al. Numerical and experimental research on a resonance-based wave energy converter[J]. Energy Conversion and Management, 2022, 269: 116152. [4] Cai Yuanqi. Experimental study on a pitching wave energy converter with adjustable natural period[J]. Ocean Engineering, 2022: 17. [5] Dai Y, Chen Y, Xie L. A study on a novel two-body floating wave energy converter[J]. Ocean Engineering, 2017, 130: 407-416. [6] Al Shami E, Wang Z, Wang X. Non-linear dynamic simulations of two-body wave energy converters via identification of viscous drag coefficients of different shapes of the submerged body based on numerical wave tank CFD simulation[J]. Renewable Energy, 2021, 179: 983-997. [7] Ma Y, Zhang A, Yang L, et al. Motion simulation and performance analysis of two-body floating point absorber wave energy converter[J]. Renewable Energy, 2020, 157: 353-367. [8] 周亚辉, 杨兴林, 周效国, 等. 穿孔式双浮体装置水动力及波能转换特性研究[J]. 振动与冲击, 2021, 40(5): 211-217. [9] Tran N, Sergiienko N Y, Cazzolato B S, et al. On the importance of nonlinear hydrodynamics and resonance frequencies on power production in multi-mode WECs[J]. Applied Ocean Research, 2021, 117: 102924. [10] Waters R, Stålberg M, Danielsson O, et al. Experimental results from sea trials of an offshore wave energy system[J]. Applied Physics Letters, 2007, 90(3): 034105. [11] Taghipour R, Perez T, Moan T. Hybrid frequency–time domain models for dynamic response analysis of marine structures[J]. Ocean Engineering, 2008, 35(7): 685-705. [12] Falnes J. Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction[M]. Cambridge University Press, 2002. [13] Jin S, Patton R J, Guo B. Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment[J]. Renewable Energy, 2018, 129: 500-512. [14] Goda Y. A Comparative Review on the Functional Forms of Directional Wave Spectrum[J]. Coastal Engineering Journal, 1999, 41(1): 1-20. [15] Lin Y, Dong S, Wang Z, et al. Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids[J]. Renewable Energy, 2019, 136: 275-295. [16] Bingölbali B, Majidi A G, Akpınar A. Inter- and intra-annual wave energy resource assessment in the south-western Black Sea coast[J]. Renewable Energy, 2021, 169: 809-819. [17] Li B, Chen W, Li J, et al. Wave energy assessment based on reanalysis data calibrated by buoy observations in the southern South China Sea[J]. Energy Reports, 2022, 8: 5067-5079. [18] Wu S, Liu C, Chen X. Offshore wave energy resource assessment in the East China Sea[J]. Renewable Energy, 2015, 76: 628-636.

PDF(1694 KB)

Accesses

Citation

Detail

段落导航
相关文章

/