内衬结构对活性破片高速驱动影响规律研究

焦晓龙1,王媛婧1,吴宗娅2,徐豫新3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 230-238.

PDF(1397 KB)
PDF(1397 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 230-238.
论文

内衬结构对活性破片高速驱动影响规律研究

  • 焦晓龙1,王媛婧1,吴宗娅2,徐豫新3
作者信息 +

Study on influence rule of a lining structure on high speed driving of reactive fragment

  • JIAO Xiaolong1, WANG Yuanjing1, WU Zongya2, XU Yuxin3
Author information +
文章历史 +

摘要

为实现活性破片在高速驱动下的完整性,研究内衬结构对活性破片高速驱动的影响规律。根据能量守恒定律建立了考虑内衬伸长率的破片初速计算模型,选择2A12铝、20号钢与20号钢/芳纶复合结构三种内衬,基于物态方程分析了内衬与破片接触面上的界面压强,设计了2A12铝和20号钢/芳纶复合结构内衬战斗部方案,通过静爆试验对活性破片破碎情况及计算模型进行了验证。结果显示:20号钢伸长率较2A12铝提高了145.83%,20号钢/芳纶复合内衬战斗部较2A12铝内衬战斗部装填比降低了14%,破片初速提升了10.85%;所建立模型的计算结果与试验吻合较好,计算精度较现有模型提高了8%以上。基于试验结果和理论分析,表明20号钢/芳纶复合内衬实现了对活性破片2300m/s以上速度的爆炸完整驱动。

Abstract

To achieve high velocity and high integrity of the reactive fragment during explosive driving, the influence rule of lining structure on high-speed driving of reactive fragment was studied. Based on the law of conservation of energy, a new model of initial speed of preformed fragment was established by theoretical derivation, which considered the elongation of lining material. Three linings of 2A12 aluminum, 20 steel and 20 steel/aramid composite structure were selected. Based on the equation of state, the interfacial pressure on the contact surface between the lining and the fragment was analyzed. The breakage of reactive fragments and the new model were verified by the static explosion test. Results show that the elongation of 20 steel is 145.83% higher than that of 2A12 aluminum, the loading ratio of warhead with 20 steel/aramid composite lining is 14% lower than that of 2A12 aluminum lining, and the initial fragment velocity is 10.85% higher. The new model is well consistent with the experiment results, and its calculation accuracy is more than 8% higher than the existing model. Based on experimental results and theoretical analysis, it is shown that the reactive fragments remains integrity at a driving speed of more than 2300m/s by using 20 steel/aramid composite lining.

关键词

兵器科学与技术 / 预制破片战斗部 / 爆炸驱动 / 初速

Key words

ordnance science and technology / preformed fragment warhead / explosive driven / initial velocity

引用本文

导出引用
焦晓龙1,王媛婧1,吴宗娅2,徐豫新3. 内衬结构对活性破片高速驱动影响规律研究[J]. 振动与冲击, 2024, 43(4): 230-238
JIAO Xiaolong1, WANG Yuanjing1, WU Zongya2, XU Yuxin3. Study on influence rule of a lining structure on high speed driving of reactive fragment[J]. Journal of Vibration and Shock, 2024, 43(4): 230-238

参考文献

[1] 何源. 含能破片作用机制及其毁伤效应实验研究[D]. 南京: 南京理工大学, 2011. HE Yuan. Study on action mechanism of energetic fragments and damage effect of experiment[D]. Nanjing: Nanjing University of Science and Technology, 2011. [2] GE C, YU Q, ZHANG H, et al. On dynamic response and fracture-induced initiation characteristics of aluminum particle filled ptfe reactive material using hat-shaped specimens[J]. Materials & Design, 2020, 188: 108472. [3] TU J, QIAO L, SHAN Y, et al. Study on the impact-induced energy release characteristics of Zr68.5Cu12Ni12Al7.5 amorphous alloy[J]. Materials, 2021, 14(6): 1447. [4] 冀建平, 邢亚英, 杨增林, 等. 破片式战斗部用活性材料研究进展[J]. 有色金属工程, 2022, 12(6): 52-67. JI Jian-ping, XING Ya-ying, YANG Zeng-lin, et al. Research progress of reactive materials for fragmentation warhead [J]. Nonferrous Metals Engineering, 2022, 12(6): 52-67. [5] 李鑫, 王伟力, 梁争峰, 等. 复合结构活性破片对双层靶标毁伤效应[J]. 兵工学报, 2021, 42(4): 764-772. LI Xin, WANG Wei-li, LIANG Zheng-feng, et al. Damage effect of composite structural reactive fragments on double-layer targets [J]. Acta Armamentarii, 2021, 42(4): 764-772. [6] 刘青, 杨华楠, 廖雪松, 等. 撞靶速度对活性破片释能规律的影响[J]. 兵器装备工程学报, 2021, 42(11): 47-51. LIU Qing, YANG Hua-nan, LIAO Xue-song, et al. Effect of hitting target speed on releasing energy of reactive fragment [J]. Journal of Ordnance Equipment Engineering, 2021, 42(11): 47-51. [7] 彭军, 李彪彪, 袁宝慧, 等. 钢包覆式活性破片侵彻双层铝靶的行为特性研究[J]. 火炸药学报, 2020, 43(1): 90-95. PENG Jun, LI Biao-biao, YUAN Bao-hui, et al. Research on behavior of steel-coated reactive materials fragment on penetrating double-layer aluminum plates [J]. Chinese Journal of Explosives & Propellants, 2020, 43(1): 90-95. [8] 胡平. 预制破片战斗部快速设计及威力场可视化系统[D]. 北京: 北京理工大学, 2018. HU Ping. The research of visualization system of prefabricated fragment warhead rapid design and power field[D]. Beijing: Beijing Institute of Technology, 2018. [9] 孙新, 白春华, 王浩喆, 等. 预制破片战斗部安全距离试验与数值仿真研究[J]. 兵器装备工程学报, 2021, 42(6): 27-33. SUN Xin, BAI Chun-hua, WANG Hao-zhe, et al. Experiment and numerical simulation of prefabricated fragment warhead’s safety distance[J]. Journal of Ordnance Equipment Engineering, 2021, 42(6): 27-33. [10] 时党勇, 张庆明, 夏长富. 多层预制破片战斗部数值仿真方法及起爆方式影响[J]. 解放军理工大学学报(自然科学版), 2009, 10(6): 553-558. SHI Dang-yong, ZHANG Qing-ming, XIA Chang-fu. Numerical simulation method and different initiation modes for prefabricated multilayer fragment warhead[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2009, 10(6): 553-558. [11] 尹峰, 张亚栋, 方秦. 常规武器爆炸产生的破片及其破坏效应[J]. 解放军理工大学学报(自然科学版), 2005, 6(1): 50-53. YIN Feng, ZHANG Ya-dong, FANG Qin. Fragment and its destroy effect produced by conventional weapon[J]. Journal of PLA University of Science and Technology (Natural Science), 2005, 6(1): 50-53. [12] GUO H, WU Y, HUANG F. Wide range temperature-dependent deformation and fracture mechanisms for 8701 under dynamic and static loading[J]. RSC Advances, 2018, 8(26): 14293-14299. [13] 舒俊翔, 裴红波, 黄文斌, 等. 几种常用炸药的爆压与爆轰反应区精密测量[J]. 爆炸与冲击, 2022, 42(5): 16-25. SHU Jun-xiang, PEI Hong-bo, HUANG Wen-bin, et al. Accurate measurements of detonation pressure and detonation reaction zones of several commonly-used explosives [J]. Explosion and Shock Waves, 2022, 42(5): 16-25. [14] 陈鹏, 卢芳云, 覃金贵, 等. 含钨活性材料动态压缩力学性能[J]. 兵工学报, 2015, 36(10): 1861-1866. CHEN Peng, LU Fang-yun, QIN Jin-gui, et al. Dynamic compressive mechanical properties of tungstenic reactive material [J]. Acta Armamentarii, 2015, 36(10): 1861-1866. [15] 刘晓俊. 活性材料动态力学性能及冲击反应机理研究[D]. 北京: 北京理工大学, 2017. LIU Xiao-jun. Research of mechanical behavior and impact-induced reaction mechanism for reactive materials[D]. Beijing: Beijing Institute of Technology, 2017. [16] 王杰, 张宏伟, 王爱民, 等. 一种新型锆钛合金的动态力学行为研究[J]. 金属学报, 2012, 48(5): 636-640. WANG Jie, ZHANG Hong-wei, WANG Ai-min, et al. Investigation of dynamic mechanical behavior of a new Zr-Ti alloy [J]. Acta Metallurgica Sinica, 2012, 48(5): 636-640. [17] 刘晓俊, 任会兰, 宁建国. Zr-W多功能含能结构材料的制备及动态压缩特性[J]. 复合材料学报, 2016, 33(10): 2297-2303. LIU Xiao-jun, REN Hui-lan, NING Jian-guo. Preparation and dynamic compression properties of Zr-W multifunctional energetic structural material [J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2297-2303. [18] 汪海锋, 李文. W丝/Zr基非晶复合材料的压缩变形行为[J]. 沈阳理工大学学报, 2010, 29(1): 80-82+94. WANG Hai-feng, LI Wen. Deformation behavior of W/Zr-based amorphous composite under compression [J]. Journal of Shenyang Ligong University, 2010, 29(1): 80-82+94. [19] SEROPYAN S, SAIKOV I, ANDREEV D, et al. Reactive ni–al-based materials: strength and combustion behavior[J]. Metals, 2021, 11(6): 949. [20] REN H, LIU X, NING J. Microstructure and mechanical properties of w-zr reactive materials[J]. Materials Science and Engineering: A, 2016, 660: 205–212. [21] 罗普光, 毛亮, 魏晨杨, 等. 锆基非晶活性材料动态力学性能及本构关系[J]. 含能材料, 2021, 29(12): 1176-1181. LUO Pu-guang, MAO Liang, WEI Chen-yang, et al. Dynamic mechanical properties and constitutive relations of Zr-based amorphous reactive material[J]. Chinese Journal of Energetic Materials, 2021, 29(12): 1176-1181. [22] 石永相, 施冬梅. ZrCuNiAlAg块体非晶合金的状态方程研究[J]. 热加工工艺, 2019, 48(4): 102-104. SHI Yong-xiang, SHI D M. Study on state equation of ZrCuNiAlA bulk amorphous alloy[J]. Hot Working Technology, 2019, 48(4): 102-104. [23] 刘桂涛, 梁栋, 赵文天, 等. 锆基多功能合金的动态压缩性能研究[J]. 兵器材料科学与工程, 2012, 35(2): 73-76. LIU Gui-tao, LIANG Dong, ZHAO Wen-tian, et al. Dynamic compression properties of Zr-based multi-function alloy[J]. Ordnance Material Science and Engineering, 2012, 35(2): 73-75. [24] 张云峰, 罗兴柏, 施冬梅, 等. 动态压缩下Zr基非晶合金失效释能机理[J]. 爆炸与冲击, 2019, 39(6): 35-42. ZHANG Yun-feng, LUO Xing-bo, SHI Dong-mei, et al. Failure behavior and energy release of Zr-based amorphous alloy under dynamic compression[J]. Explosion and Shock Waves, 2019, 39(6): 35-42. [25] SHANG C, REN T, ZHANG Q, et al. Experimental research on damage characteristics of multi-spaced plates with long rods of steel and w-zr reactive material at hypervelocity impact[J]. Materials & Design, 2022, 216: 110564. [26] YOUNGBLOOD S H, PALMER S, AVALOS VIOLANTE D A, et al. In situ measurement of the fragmentation behavior of al/ptfe reactive materials subjected to explosive loading, part 1: fragment size measurements[J]. Propellants, Explosives, Pyrotechnics, 2022: e202200103. [27] LUO P, WANG Z, JIANG C, et al. Experimental study on impact-initiated characters of W/Zr energetic fragments[J]. Materials & Design, 2015, 84: 72-78. [28] 张云峰, 罗兴柏, 孙华刚, 等. Zr41Ti14Ni12.5Cu10Be22.5非晶合金冲击压缩行为理论与实验研究[J]. 哈尔滨工业大学学报, 2019, 51(05): 94-99. ZHANG Yun-feng, LUO Xing-bo, SUN Hua-gang, et al. Theoretical and experimental research of shock compressive behavior of Zr41Ti14Ni12.5Cu10Be22.5 amorphous alloy[J]. Journal of Harbin Institute of Technology, 2019, 51(5): 94-99. [29] 顾阳晨, 王金相, 陈兴旺, 等. 高速动能破片和包覆活性材料对屏蔽装药的串联毁伤效应[J]. 含能材料, 2021, 29(7): 607-616. GU Yang-chen, WANG Jin-xiang, CHEN Xing-wang, et al.. Tandem damage effect of high-speed kinetic fragments and coated active materials on shielded charges [J]. Chinese Journal of Energetic Materials, 2021, 29(7): 607-616. [30] 杨相礼. 包覆式含能破片爆炸驱动结构完整性研究[D]. 南京: 南京理工大学, 2016. YANG Xiang-li. Study on the structural integrity of case-wrapped energetic fragment driven by explosive[D]. Nanjing: Nanjing University of Science and Technology, 2016. [31] 余庆波, 王海福, 金学科, 等. 缓冲材料对活性破片战斗部爆炸驱动影响分析[J]. 北京理工大学学报, 2013, 33(2): 121-126. YU Qing-bo, WANG Hai-fu, JIN Xue-ke, et al. Influence of buffer material on explosive driven of reactive fragment warhead[J]. Transaction of Beijing Institute of Technology, 2013, 33(2): 121-126. [32] 李姝妍, 王在成, 毛亮, 等. 活性破片战斗部用缓冲结构应力衰减特性研究[J]. 兵器材料科学与工程, 2020, 43(5): 43-49. LI Shu-yan, WANG Zai-cheng, MAO Liang, et al. Study on stress attenuation characteristics of buffer structure of reactive fragment warhead[J]. Ordnance Material Science and Engineering, 2020, 43(5): 43-49. [33] WANG L, JIANG J, LI M, et al. Improving the damage potential of w-zr reactive structure material under extreme loading condition[J]. Defence Technology, 2021, 17(2): 467-477. [34] 张玉令, 施冬梅, 张云峰, 等. W骨架/zr基非晶合金复合材料破片侵彻能力与后效研究[J]. 爆炸与冲击, 2021, 41(5): 58-66. ZHANG Yu-ling, SHI Dong-mei, ZHANG Yun-feng, et al. Investigation of penetration ability and aftereffect of Zr-based metallic glass reinforced porous W matrix composite fragments[J]. Explosion and Shock Waves, 2021, 41(5): 58-66. [35] 王树山. 终点效应学[M]. 北京: 科学出版社, 2019. WANG Shu-shan. Terminal effects[M]. Beijing: Science Press, 2019. (in Chinese) [36] 印立魁, 蒋建伟, 门建兵, 等. 立方体预制破片战斗部破片初速计算模型[J]. 兵工学报, 2014, 35(12): 1967-1971. YIN Li-kui, JIANG Jian-wei, MEN Jian-bing, et al. An initial velocity model of explosively-driven cubical fragments[J]. Acta Armamentarii, 2014, 35(12): 1967-1971. [37] 高月光, 冯顺山, 刘云辉, 等. 不同端盖厚度的圆柱形装药壳体破片初速分布[J]. 兵工学报, 2022, 43(07): 1527-1536. GAO Yue-guang, FENG Shun-shan, LIU Yun-hui, et al. Initial velocity distribution of fragments from cylindrical charge shells with different thick end caps [J]. Acta Armamentarii, 2022, 43(07): 1527-1536. [38] Л. П. ORLENKO, С. Г. АНДРЕЕВ, А. В. БАбКИН, 等. 爆炸物理学[M]. 孙承纬, 译. 北京: 科学出版社, 2011. ORLENKO Л П, АНДРЕЕВ С Г, БАбКИН А В, et al. Explosion Physics[M]. SUN Cheng-wei, translated. Beijing: Science Press, 2011. [39] 陈兴旺, 王金相, 唐奎, 等. 爆炸驱动多层球形破片初速场分析[J]. 振动与冲击, 2020, 39(16): 129-134. CHEN Xing-wang, WANG Jin-xiang, TANG Kui, et al. Analysis on the initial velocity field of a multi-layer spherical fragment driven by explosion[J]. Journal of Vibration and Shock, 2020, 39(16): 129-134. [40] 王德生, 李延年, 马松合, 等. 管内爆轰产物压力测量[J]. 爆炸与冲击, 1984, 4(3): 74-78. WANG De-sheng, LI Yan-nian, MA Song-he, et al. Measurement of the pressure of detonation products in a tube[J]. Explosion and Shock Waves, 1984, 4(3) :74-78. [41] 王礼立, 胡时胜, 杨黎明, 等. 材料动力学[M]. 合肥: 中国科学技术大学出版社, 2017. WANG Li-li, HU Shi-sheng, YANG Li-ming, et al. Dynamics of materials [M]. Hefei: University of Science and Technology of China of Press, 2017. [42] 郑柯, 董新龙. 20钢柱壳外爆拉-剪切型断裂研究[J]. 兵器材料科学与工程, 2018, 41(3): 61-64. ZHENG Ke, DONG Xin-long. Tensile-shear failure of 20 steel cylindrical shells subjected to explosive loading [J]. Ordnance Material Science and Engineering, 2018, 41(3): 61-64. [43] MARTINEAU R L, ANDERSON C A, SMITH F W. Expansion of cylindrical shells subjected to internal explosive detonations[J]. Experimental Mechanics, 2000, 40(2): 219-225. [44] 蒋浩征. 杀伤战斗部破片飞散初速V0的计算[J]. 兵工学报, 1980(1): 68-79. JIANG Hao-zheng. The prediction on initial velocity of HE warhead[J]. Ordnance Engineering Journal, 1980, 1(1): 68-79. [45] MA Y, HE Y, WANG C T, et al. Influence of lining materials on the detonation driving of fragments[J]. Journal of Mechanical Science and Technology, 2022, 36(3): 1337-1350. [46] DHOTE K D, MURTHY K P S, RAJAN K M, et al. Dynamics of multi layered fragment separation by explosion[J]. International Journal of Impact Engineering, 2015, 75: 194-202. [47] 张宝平, 张庆明, 黄风雷. 爆轰物理学[M]. 北京: 兵器工业出版社, 2009. ZHANG Bao-ping, ZHANG Qing-ming, HUANG Feng-lei. Detonation physics[M]. Beijing: Ordnance Industry Press, 2009. [48] MARTIN M, SEKINE T, KOBAYASHI T, et al. High-pressure equation of the state of a zirconium-based bulk metallic glass[J]. Metallurgical and Materials Transactions A, 2007, 38(11): 2689–2696. [49] COOPER P W. Explosives engineering[M]. New York,USA: Wiley-VCH, 1996. [50] 张俊, 刘荣忠, 郭锐, 等. 破甲杀伤复合战斗部仿真研究[J]. 计算机仿真, 2012, 29(12): 34-37+302. ZHANG Jun, LIU Rong-zhong, GUO Rui, et al. Simulation study on anti-armor and anti-personnel composite warhead[J]. Computer Simulation, 2012, 29(12): 34-37+302. [51] 杨相礼, 何勇, 何源. 圆柱形预制破片爆炸驱动仿真研究[J]. 兵工自动化, 2016, 35(8): 9-12+41. YANG X L, HE Y, HE Y. Numerical simulation of cylindrical prefabricated fragment under explosive-driven process[J]. Ordnance Industry Automation, 2016, 35(8): 9-12+41. [52] MARSH S. LASL shock hugoniot data[M]. Berkeley,CA: University of California Press, 1980. [53] IFTIMIE B, LUPOAE M, ORBAN O. Experimental investigations regarding the behaviour of composite panels based on polyurea and kevlar or dyneema layers under blast and fragments[J]. Materiale Plastice, 2019, 56(3): 538–542. [54] 解江, 姜超, 高斌元, 等. 高性能纤维织物抗爆性能试验研究[J]. 应用力学学报, 2022, 39(1): 35–43. XIE Jiang, JIANG Chao, GAO Bin-yuan, et al. Experimental study on blast resistance of high performance fabric [J]. Chinese Journal of Applied Mechanics, 2022, 39(1): 35-43. [55] 王林, 宫小泽, 李晓辉, 等. 基于破片特性的破片初速计算方法[C]// 2012航空试验测试技术学术交流会, 2012. 137-139.. WANG Lin, GONG Xiao-ze, LI Xiao-hui, et al. Calculation method of the fragment velocity on the fragment characteristics[C]//2012 Academic Exchange on Aeronautical Test Technology, 2012. 137-139. [56] 何翠云, 莫文锋, 罗兵辉, 等. 均匀化处理对2A12铝合金组织及性能的影响[J]. 材料导报, 2020, 34(12): 12083–12087. HE Cui-yun, MO Wen-feng, LUO Bing-hui, et al. Effect of homogenization treatment on microstructure and properties of 2A12 aluminum alloy. Materials Reports, 2020, 34(12): 12083–12087. [57] 余宗森, 袁泽喜, 李定秀, 等. 鞍钢钢材成分与其力学性能的定量关系[J]. 北京科技大学学报, 1997, 19(5): 510-515. YU Zong-sen, YUAN Ze-xi, LI Ding-xiu, et al. Quantitative relationship between mechanical properties and chemical of steels made by Anshan iron and steel Corporation[J]. Journal of University of Science and Technology Beijing, 1997, 19(5): 510-515. [58] 周兰庭, 张庆明, 龙仁荣. 新型战斗部原理与设计[M]. 北京: 国防工业出版社, 2018. ZHOU Lan-tin, ZHANG Qing-ming, LONG Ren-rong. Principle and design of the new warhead[M]. Beijing: National Defense Industry Press, 2018. [59] FREM D. A mathematical model for estimating the gurney velocity of chemical high explosives[J]. FirePhysChem, 2022.

PDF(1397 KB)

Accesses

Citation

Detail

段落导航
相关文章

/