月球车与月壤交互作用的离散元-多体动力学耦合建模与分析

徐鸿,雷波,刘锦阳

振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 239-249.

PDF(2237 KB)
PDF(2237 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 239-249.
论文

月球车与月壤交互作用的离散元-多体动力学耦合建模与分析

  • 徐鸿,雷波,刘锦阳
作者信息 +

DEM-MBD coupled modelling and analysis for the mutual interaction of lunar rover and moon soil

  • XU Hong, LEI Bo, LIU Jinyang
Author information +
文章历史 +

摘要

目前,对于散体颗粒物质与复杂机械系统的耦合作用研究,面临着跨尺度、计算规模庞大以及非光滑表面的接触检测困难等问题。为了探究月球车与月壤交互作用,首先对颗粒-多体耦合系统动力学建模与接触算法进行研究。分别用离散元方法和多体动力学笛卡尔方法建立了散体球形颗粒和含约束多体系统的动力学模型,并基于Hertz-Mindlin模型计算颗粒与刚体的接触力,在此基础上给出顺序耦合策略,建立了离散元和多体耦合的动力学模型。针对月球车齿状车轮的非光滑表面与颗粒之间接触检测规模庞大的问题,提出了非光滑形状物体的分区域局部检测方法,降低了局部检测的规模。通过对比圆柱体冲击颗粒的实验和仿真结果,验证了离散元-多体耦合模型的准确性。在耦合动力学建模和接触算法研究的基础上,对具有齿状车轮的月球车在月壤上行驶过程进行动力学仿真,研究不同驱动参数下的系统动力学特性以及不同轮胎形状对行驶运动的影响,研究结果表明,交错形轮齿的月球车相较直齿形轮齿前进距离多14%,前进效率较高,该研究对月球车的设计具有理论指导意义。

Abstract

At present, the study of the coupling interaction between the granular matter and the complex mechanical systems is faced with challenges such as multiscale, large computational costs, and difficulties in contact detection on non-smooth surfaces. In order to investigate the interaction between the lunar rover and the moon soil, the coupled dynamic modelling and contact detection algorithm for the granular matter and the multibody system are studied firstly. The dynamics of the granular spherical particles and the constrained multibody systems are modeled by the discrete element method (DEM) and the Cartesian method of the multibody dynamics (MBD), respectively, and the contact forces between the granular particles and the rigid bodies are calculated based on the Hertz-Mindlin model. On this basis, a sequential coupling strategy is presented and DEM-MBD coupled dynamic model is established. Concerning the large-scale contact detection between the non-smooth surface of the rover’s toothed wheels and the particles, a sub-regional local detection strategy is proposed to handle the contacts between the objects with non-smooth shapes, which can reduce the scale of local detection. The accuracy of the proposed theoretical model is verified through the comparison of the experimental and simulation results of a rigid cylinder impacting granular matter. Based on the proposed coupled dynamic modelling and the contact detection algorithm, dynamics simulation for the driving process of the lunar rover with toothed wheels on the lunar soil is carried out to study the dynamic characteristics under different driving parameters and the influence of different tire shapes on the driving motion. The research results show that the lunar rover with staggered teeth has a 14% longer forward distance compared to straight teet and has higher forward efficiency, which provides some theoretical guidance for the design of the lunar rover.

关键词

离散元 / 多体动力学 / 月球车 / 耦合建模 / 高效接触检测

Key words

Discrete elements method / Multibody dynamics / Lunar Rover / Coupling modelling / Efficient contact detection algorithm

引用本文

导出引用
徐鸿,雷波,刘锦阳. 月球车与月壤交互作用的离散元-多体动力学耦合建模与分析[J]. 振动与冲击, 2024, 43(4): 239-249
XU Hong, LEI Bo, LIU Jinyang. DEM-MBD coupled modelling and analysis for the mutual interaction of lunar rover and moon soil[J]. Journal of Vibration and Shock, 2024, 43(4): 239-249

参考文献

[1] 孙其诚, 厚美瑛, 金峰. 颗粒物质物理与力学 [M]. 北京:科学出版社, 2011. SUN Qi-cheng, HOU Mei-ying, JIN Feng. Physics and Mechanics of Granular Matter [M]. Beijing:Science Press, 2011. [2] 许文祥, 孙洪广, 陈文, 等. 软物质系颗粒材料组成、微结构与传输性能之间关联建模综述 [J]. 物理学报, 2016, 65(17): 82-105. Xu Wen-xiang, Sun Hong-guang, Chen Wen, et al. A review of correlative modeling for transport properties, microstructures, and compositions of granular materials in soft matter. [J]. Acta Physica Sinica, 2016, 65(17): 82-105. [3] CUNDALL P A, STRACK O. A discrete numerical model for granual assemblies [J]. Geotechnique, 1979, 29(1): 47-65. [4] GONG C, TRAVERS M J, ASTLEY H C, et al. Kinematic gait synthesis for snake robots [J]. International Journal of Robotics Research, 2016, 35(1-3): 100-113. [5] Chen L, Zhang T N, et al. A Terradynamics of Legged L-ocomotion on Granular Media[J].Science, 2013, 339: 1408-1412. [6] DICKINSON, MICHAEL, FARLEY, et al. How Animals Move: An Integrative View [J]. Science, 2000, 288(5463): 100-106. [7] AGUILAR, J., GOLDMAN, D. Robophysical study of jumping dynamics on granular media [J]. Nature Phys, 2016, 12: 278–283. [8] MA K Y, CHIRARATTANANON P, FULLER S B, et al. Controlled flight of a biologically inspired, insect-scale robot [J]. Science, 2013, 340(6132): 603-607. [9] MALADEN R D, DING Y, LI C, et al. Undulatory Swimming in Sand: Subsurface Locomotion of the Sandfish Lizard [J]. Science, 2009, 325: 314-318. [10] JI S Y, LIANG S M. DEM-FEM-MBD coupling analysis of landing process of lunar lander considering landing mode and buffering mechanism [J]. Advances in Space Research, 2021, 68(3): 1627-1643. [11] LOMMEN S, LODEWIJKS G, SCHOTT D L. Co-simulation framework of discrete element method and multibody dynamics models [J]. Engineering Computations, 2018, 35(3): 1481-1499. [12] LOMMEN S W, SCHOTT D L, LODEWIJKS G. Multibody dynamics model of a scissors grab for co-simulation with discrete element method [J]. FME Transactions, 2012, 40(4): 177-180. [13] WU Y R, CHUNG Y C, WANG I C. Two-way coupled MBD–DEM modeling and experimental validation for the dynamic response of mechanisms containing damping particles [J]. Mechanism and Machine Theory, 2021, 159: 104257. [14] HU W, RAKHSHA M, YANG L, et al. Modeling granular material dynamics and its two-way coupling with moving solid bodies using a continuum representation and the SPH method [J]. Computer Methods in Applied Mechanics and Engineering, 2021, 385: 114022. [15] HU W, ZHOU Z, CHANDLER S, et al. Traction control design for off-road mobility using an SPH-DAE cosimulation framework [J]. Multibody System Dynamics, 2022, 55(1-2): 165-188. [16] RAKHSHA M, KELLY C, OLSEN N, et al. Multibody Dynamics Versus Fluid Dynamics: Two Perspectives on the Dynamics of Granular Flows [J]. Journal of Computational and Nonlinear Dynamics, 2020, 15(9): 091009. [17] RADJAI F, LANTSOGHT O, FISETTE P, et al. Coupling multibody system and granular dynamics application to a 2D benchmark [J]. EPJ Web of Conferences, 2017, 140: 16007. [18] DOCQUIER N, LANTSOGHT O, DUBOIS F, et al. Modelling and simulation of coupled multibody systems and granular media using the non-smooth contact dynamics approach [J]. Multibody System Dynamics, 2020, 49(2): 181-202. [19] 梁绍敏. 航天器着陆过程分析的离散元-有限元-多体动力学耦合算法及应用 [D]. 大连理工大学. LIANG Shao-min. DEM-FEM-MBD coupling algorithm for spacecraft landing process analysis and applications [D]. Dalian University of Technology. [20] SANBORN G, CHOI J, CHOI J H. Strategy for co-simulation of multi-flexible-body dynamics and the discrete element method [J]. Journal of Mechanical Science and Technology, 2021, 35(10): 4363-4380. [21] WU Y-R, CHUNG Y-C, WANG I C. Two-way coupled MBD–DEM modeling and experimental validation for the dynamic response of mechanisms containing damping particles [J]. Mechanism and Machine Theory, 2021, 159: 104257. [22] CHUNG Y-C, WU Y-R. Dynamic modeling of a gear transmission system containing damping particles using coupled multi-body dynamics and discrete element method [J]. Nonlinear Dynamics, 2019, 98(1): 129-149. [23] 洪嘉振. 计算多体系统动力学 [M]. 高等教育出版社, 1999. HONG Jia-zhen. Computational Multibody System Dynamics [M]. Higher Education Press, 1999. [24] MINDLIN R D. Compliance of Elastic Bodies in Contact [J]. Journal of Applied Mechanics, 1949, 16: 259-268. [25] HERTZ H. Ueber die Berührung fester elastischer Körper [M]. CRELLE A L, BORCHARDT C W, SCHELLBACH. Band 92. Berlin, Boston; De Gruyter. 1882: 156-171. [26] MICHAEL M, VOGEL F, PETERS B. DEM–FEM coupling simulations of the interactions between a tire tread and granular terrain [J]. Computer Methods in Applied Mechanics and Engineering, 2015, 289: 227-248. [27] ZHENG Z, ZANG M, CHEN S, et al. An improved 3D DEM-FEM contact detection algorithm for the interaction simulations between particles and structures [J]. Powder technology, 2017, 305: 308-322. [28] 于清, 洪嘉振. 受约束多体系统一种新的违约校正方法 [J]. 力学学报, 1998, 30(3): 300-306. YU Qing, HONG Jia-zhen. A New Violation Correction Method For Constraint Multibody Systems [J]. Acta Mechanica Sinica, 1998, 30(3): 300-306. [29] BESTER C S, BEHRINGER R P. Collisional model of energy dissipation in three-dimensional granular impact [J]. Phys Rev E, 2017, 95(3-1): 032906. [30] 丁林峰, 李耀明, 徐立章. 稻谷压缩试验的接触力学分析 [J]. 农机化研究, 2007(12): 112-115. DING Lin-feng, LI Yao-ming, Xu Li-zhang. Research and Analysis in the Compressing Experimentation about Corn with Contact Mechanicals [J]. Journal of Agricultural Mechanization Research, 2007(12): 112-115.

PDF(2237 KB)

Accesses

Citation

Detail

段落导航
相关文章

/