智能约束层阻尼结构动力学建模及振动主动控制研究

黄志诚1,黄帆1,王兴国1,褚福磊2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 45-51.

PDF(1474 KB)
PDF(1474 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 45-51.
论文

智能约束层阻尼结构动力学建模及振动主动控制研究

  • 黄志诚1,黄帆1,王兴国1,褚福磊2
作者信息 +

A study on dynamic modeling and active vibration control of intelligent constrained layer damped structures

  • HUANG Zhicheng1,HUANG Fan1,WANG Xingguo1,CHU Fulei2
Author information +
文章历史 +

摘要

本文基于耗散坐标与GHM模型建立智能约束层阻尼悬臂梁结构的动力学模型,并研究智能约束层悬臂梁结构的振动主动控制。针对结构模型自由度过高问题,分别在物理空间和模态空间对结构模型进行联合降阶处理。先通过具体算例验证了本文建模方法的正确性,然后比较研究了压电片和粘弹性层铺设位置对系统振动控制效果和控制成本的影响。最后验证了结构简化模型的普遍适用性。研究结果显示,在控制器反馈增益相同的条件下,压电片和粘弹性层的位置越靠近固定端,系统控制效果越好,控制成本越小。简化的模型对含有噪声的输入信号也有较好的控制效果。

Abstract

In this paper, the dynamic model of the damping cantilever structure of the intelligent constraint layer is established based on the dissipative coordinates and the GHM model, and the vibration active control of the cantilever structure of the intelligent constraint layer is studied. Aiming at the problem of excessive freedom of the structural model, the joint order reduction treatment of the structural model is carried out in the physical space and modal space. The correctness of the modeling method in this paper is verified by specific examples, and then the influence of the laying position of piezoelectric sheet and viscoelastic layer on the vibration control effect and control cost of the system is compared. Finally, the universal applicability of the structural simplification model is verified. The results show that under the condition of the same feedback gain of the controller, the closer the position of the piezoelectric sheet and the viscoelastic layer to the fixed end, the better the system control effect and the smaller the control cost. The simplified model also has a better control effect on noisy input signals.

关键词

振动主动控制 / GHM模型 / 模型降阶 / 智能约束层阻尼

Key words

Vibration active control / GHM model / Model reduction / Intelligent Constrained Layer Damping

引用本文

导出引用
黄志诚1,黄帆1,王兴国1,褚福磊2. 智能约束层阻尼结构动力学建模及振动主动控制研究[J]. 振动与冲击, 2024, 43(4): 45-51
HUANG Zhicheng1,HUANG Fan1,WANG Xingguo1,CHU Fulei2. A study on dynamic modeling and active vibration control of intelligent constrained layer damped structures[J]. Journal of Vibration and Shock, 2024, 43(4): 45-51

参考文献

[1] Kumar, A.; Behera, R.K. Passive Constrained Layer Damping: A State of the Art Review. Mater. Sci. Eng.2019, 653, 012036. [2] 郑玲,王宜,谢熔炉.主动约束层阻尼结构的振动控制[J].重庆大学学报,2010,33(02):1-7. ZHENG Ling, WANG Yi, XIE Ronglu. Vibration control of active constrained layer damping structure[J].Journal of Chongqing University,2010,33(02):1-7. [3] Liu, Y.; Qin, Z.; Chu, F. Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads. Int. J. Mech. Sci.2021, 201, 106474. [4] 黄志诚,王兴国,吴南星,褚福磊,罗经.基于层合理论的被动约束层阻尼板有限元建模及动力学分析[J].振动与冲击,2020,39(23):148-153+201. HUANG Zhicheng, WANG Xingguo, WU Nanxing, CHU Fulei,LUO Jing. Finite element modeling and dynamic analysis of passive constrained layer damping plate based on laminated theory[J].Journal of Vibration And Shock,2020,39(23):148-153+201. [5] Zhu, R.Z.; Zhang, X.N.; Zhang, S.G.; Dai, Q.Y.; Qin, Z.Y.; Chu, F.L. Modeling and topology optimization of cylindrical shells with partial CLD treatment. Int. J. Mech. Sci.2022, 220, 107145. [6] Rezaiee-Pajand, M.; Masoodi, A.R. Hygro-thermo-elastic nonlinear analysis of functionally graded porous composite thin and moderately thick shallow panels. Mech. Adv. Mater. Struct.2020, 29, 594–612. [7] JIANG F, LI L, LIAO W H, 等. Vibration control of a rotating hub-plate with enhanced active constrained layer damping treatment[J/OL]. Aerospace Science and Technology, 2021, 118: 107081. [8] Hau, L.; H, K, Fung. Effect of ACLD treatment configuration on damping performance of a flexible beam. J. Sound Vib. 269 (2004): 549-567. [9] Baz, A.; Chen, T. Control of axi-symmetric vibrations of cylindrical shells using active constrained layer damping. Thin-Wall. Struct.2000, 36, 1–20. [10] Lesieutre, G.A.; Bianchini, E. Time Domain Modeling of Linear Viscoelasticity Using Anelastic Displacement Fields. J. Vib. Acoust.1995, 117, 424–430. [11] Shi, Y.M.; Li, Z.F.; Hua, H.X.; Fu, Z.F.; Liu, T.X. The modelling and vibration control of beams with active constrained layer damping. J. Sound Vib.2001, 245, 785–800 [12] 王攀,鲁俊,邓兆祥,廖海辰,王正亚,阳小光.基于状态观测器的机敏约束阻尼板模态控制[J].吉林大学学报(工学版),2016,46(04):1057-1064. WANG Pan, LU Jun, DENG Zhaoxiang ,LIAO Haichen,WANG Zhengya, YANG Xiaoguang. Modal control of sensitive constrained damping plate based on state observer[J].Journal of Jilin University(Engineering Science),2016,46(04):1057-1064. [13] Adessina, A.; Hamdaoui, M.; Xu, C.; Daya, E.M. Damping properties of bi-dimensional sandwich structures with multi-layered frequency dependent viscoelastic cores.Compos. Struct.2016, 154, 334–343. [14] Paz, M. Practical Reduction of Structural Eigenproblems. J. Struct. Eng.1983, 109, 2591–2599 [15] Lu, J.; Wang, P. Active vibration control of thin-plate structures with partial SCLD treatment. Mech. Sys. Sig. Pro. 2017, 84, 531–550.. [16] Guyan, R. Reduction of stiffness and mass matrices. AIAA J.1965, 3, 380–380 [17] Huang, Z.C.; Mao, Y.H.; Dai, A.N. Active Vibration Control of Piezoelectric Sandwich Plates. Materials 2022, 15, 3907. [18] Huang, Z.; Huang, F.; Wang, X.; Chu, F. Active Vibration Control of Composite Cantilever Beams. Materials 2023, 16, 95. [19] 鲁俊,王攀,邓兆祥,李政,孔德飞.机敏约束层阻尼薄板有限元建模与实验研究[J].机械科学与技术,2016,35(10):1499-1504. LU Jun, WANG Pan, DENG Zhaoxiang, LI Zheng, KONG Defei. Finite element modeling and experimental study of damping sheet of sensitive constraint layer[J].Mechanical Science and Technology,2016,35(10):1499-1504. [20] Langote, P.K.; Seshu, P. Finite element analysis of a beam with active constrained layer damping (ACLD) treatment. J. Aerosp. Sci. Technol.2004, 56, 240–253 [21] Adhikari, S.; Friswell, M.I. Eigenderivative analysis of asymmetric non-conservative systems. Int. J. Num. Methods Eng. 2001, 51, 709–733 [22] Trindade, M.A. Reduced-Order Finite Element Models of Viscoelastically Damped Beams through Internal Variables Projection. J. Vib. Acoust.2006, 128, 501–508. [23] Christensen, R. Theory of Viscoelasticity: An Introduction; Academic Press: New York, NY, USA, 1982 [24] Skelton, R.E. Cost decomposition of linear systems with application to model reduction. Int. J. Control,1980, 32, 1031–1055

PDF(1474 KB)

Accesses

Citation

Detail

段落导航
相关文章

/