高速列车轴箱轴承载荷反演模型及关键参数优化匹配

唐嘉1,池茂儒1,杨晨1,马子魁2,姚雪松2,罗赟1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 52-60.

PDF(1803 KB)
PDF(1803 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 52-60.
论文

高速列车轴箱轴承载荷反演模型及关键参数优化匹配

  • 唐嘉1,池茂儒1,杨晨1,马子魁2,姚雪松2,罗赟1
作者信息 +

A load inversion model of the axle box bearing of a high-speed train and optimal match of key parameters

  • TANG Jia1,CHI Maoru1,YANG Chen1,MA Zikui2,YAO Xuesong2,LUO Yun1
Author information +
文章历史 +

摘要

卡尔曼滤波作为状态最优估计算法,可应用于高速列车轴箱轴承载荷反演中,准确建立反演模型的同时,滤波参数的选取也是反演的关键。本文首先推导了转臂轴箱装置的17自由度垂向和横向车辆动力学模型,提出并验证了基于卡尔曼滤波算法的轴承载荷反演方法,分析并确定了模型关键参数的选取,采用自适应小生境遗传算法对其进行多目标多参数优化,最后利用SIMPACK建立一致的车辆动力学模型,计算模拟车辆在施加有轨道随机不平顺的直线上恒速运行,验证反演效果。结果表明:优化了的参数可大幅提升反演效果,验证了轴承载荷反演模型和自适应小生境遗传算法对滤波参数优化方法的正确性,为高速列车轴箱轴承载荷反演及关键参数优化提供方法和经验。

Abstract

As an optimal state estimation algorithm, Kalman filter can be applied to the inversion of high-speed train axle box bearing loads. While accurately establishing the inversion model, the selection of filter parameters is also the key to the inversion. In this paper, a 17-degree-of-freedom vertical and lateral vehicle dynamics model of the pivoting arm axle box device is derived, a bearing load inversion method based on the Kalman filter algorithm is proposed and verified, and the selection of key parameters of the model is analyzed and determined. The niche genetic algorithm performs multi-objective and multi-parameter optimization on the key parameters, and finally uses SIMPACK to establish a consistent vehicle dynamics model, calculates and simulates the vehicle running at a constant speed on a straight line with random track irregularities, and verifies the inversion effect. The results show that the optimized parameters can greatly improve the inversion effect, which verifies the correctness of the bearing load inversion model and the adaptive niche genetic algorithm for the filtering parameter optimization method, and provides a basis for the high-speed train axle box bearing load inversion and key parameter setting. Optimization provides methods and experience.

关键词

高速列车 / 卡尔曼滤波 / 轴承载荷 / 遗传算法 / 参数优化

Key words

high-speed train / kalman filter / bearing load / genetic algorithm / parameter optimization

引用本文

导出引用
唐嘉1,池茂儒1,杨晨1,马子魁2,姚雪松2,罗赟1. 高速列车轴箱轴承载荷反演模型及关键参数优化匹配[J]. 振动与冲击, 2024, 43(4): 52-60
TANG Jia1,CHI Maoru1,YANG Chen1,MA Zikui2,YAO Xuesong2,LUO Yun1. A load inversion model of the axle box bearing of a high-speed train and optimal match of key parameters[J]. Journal of Vibration and Shock, 2024, 43(4): 52-60

参考文献

[1] CHENG L Z, LIU D K, WANG Y, et al. Load distribution and contact of axle box bearings in electric multiple units[J]. International Journal of Simulation Modelling, 2019, 18(2): 290-301. [2] 查浩, 任尊松, 徐宁. 高速动车组轴箱轴承振动特性[J]. 机械工程学报, 2018, 54(16): 144-151. ZHA Hao, REN Zunsong, XU Ning. Vibration performance of high-speed vehicles with axle box bearing[J]. Journal of Mechanical Engineering, 2018, 54(16): 144−151. [3] 查浩, 任尊松, 徐宁. 高速动车组轴箱轴承滚道载荷特性研究[J]. 机械工程学报, 2020, 56(4): 135-142. ZHA Hao, REN Zunsong, XU Ning. Load characteristics of axle box bearing raceway of high-speed EMU[J]. Journal of Mechanical Engineering, 2020, 56(4): 135−142. [4] 杨晨, 池茂儒, 吴兴文, 等. 基于车辆动力学的动车组轴箱轴承动态载荷计算方法[J/OL]. 机械工程学报: 1-11[2023-02-23]. http://kns.cnki.net/kcms/detail/11.2187.th.20220808.0920.012.html. YANG Chen, CHI Maoru, WU Xingwen, et al. Dynamic load calculation method of EMU axle box bearing based on vehicle dynamics[J/OL]. Journal of Mechanical Engineering: 1-11[2023-02-23].http://kns.cnki.net/kcms/detail/11.2187.th.20220808.0920.012.html. [5] 杨晨, 池茂儒, 吴兴文, 等. 考虑车轮多边形演化的动车组轴箱轴承载荷及寿命分析[J/OL]. 振动工程学报: 1-11[2023-02-23].http://kns.cnki.net/kcms/detail/32.1349.TB.20220318.0954.002.html. YANG Chen, CHI Maoru, WU Xingwen, et al. Considering the wheel polygon evolution of EMU axlebox bearing load and life analysis[J/OL]. Journal of Vibration Engineering: 1-11[2023-02-23].http://kns.cnki.net/kcms/detail/32.1349.TB.20220318.0954.002.html. [6] 涂文兵, 杨锦雯, 罗丫, 等. 高速列车轴箱圆柱滚子轴承启动过程的打滑动力学特性[J].振动与冲击, 2020, 39(10): 127-132. TU Wenbing, YANG Jinwen, LUO Ya, et al. Skidding dynamic characteristics of axle box roller bearing of high-speed trains during start-up[J]. Journal of Vibration and Shock, 2020, 39(10): 127-132. [7] 刘德昆,李强,王曦,等. 动车组轴箱轴承基于实测载荷的寿命预测方法[J]. 机械工程学报,2016,52(22):45-54. LIU Dekun, LI Qiang, WANG Xi, et al. Life prediction method for EMU axle box bearings based on actual measured loadings[J]. Journal of Mechanical Engineering, 2016, 52(22): 45-54. [8] 刘德昆. 高速列车轴箱轴承疲劳寿命及可靠性研究[D]. 北京: 北京交通大学, 2017. LIU Dekun. Research on fatigue life and reliability of high-speed train axle box bearing[D]. Beijing: Beijing Jiaotong University, 2017. [9] 周高伟, 李桂莲, 陈鹏, 等. 高速列车轴箱轴承载荷分布测试研究Ⅰ: 轴承座开槽方案仿真分析[J]. 实验力学, 2022, 37(1): 18-26. ZHOU Gaowei, LI Guilian, CHEN Peng, et al. Research on bearing load distribution test of axle box of high-speed train I: simulation analysis of bearing seat grooving scheme[J]. Journal of Experimental Mechanics,, 2022, 37(1): 18-26. [10] 周高伟, 李桂莲, 陈鹏, 等. 高速列车轴箱轴承载荷分布测试研究Ⅱ: 实验装置及实验研究[J]. 实验力学, 2022, 37(1): 27-32. ZHOU Gaowei, LI Guilian, CHEN Peng, et al. High-speed train axle box bearing load distribution test research II: experimental device and experimental research[J]. Journal of Experimental Mechanics, 2022, 37(1): 27-32. [11] LI Kun, LIU Jie, WEN Jing, LU Cheng. Time Domain Identification Method for Random Dynamic Loads and its Application on Reconstruction of Road Excitations[J]. International Journal of Applied Mechanics, 2020, 12(08). [12] LIU Jie, MENG Xianghua, JIANG Chao, HAN Xu, ZHANG Dequan. Time-domain Galerkin method for dynamic load identification[J]. International Journal for Numerical Methods in Engineering, 2016, 105(8). [13] LIU Jie, LI Kun. Sparse identification of time-space coupled distributed dynamic load[J]. Mechanical Systems and Signal Processing, 2021, 148 [14] XIAO Xiang, SUN Zhe, SHEN Wenai. A Kalman filter algorithm for identifying track irregularities of railway bridges using vehicle dynamic responses[J]. Mechanical Systems and Signal Processing, 2020, 138(C). [15] FURUKAWA, ATSUSHI. A method to predict vertical vehicle motion caused by track irregularities[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(4): 431-443. [16] 周亚波. 基于铁道车辆振动加速度的轮轨力反演方法研究[D]. 成都: 西南交通大学, 2020. ZHOU Yabo. Research on the inverse identification method of wheel-rail force based on railway vehicle’s acceleration[D]. Chengdu: Southwest Jiaotong University, 2020. [17] 柯飙. 基于自适应卡尔曼滤波的铁道车辆轨道谱反演及应用研究[D]. 成都:西南交通大学, 2021. KE Biao. Research on railway vehicle track spectrum inversion and application based on adaptive Kalman filter[D]. Chengdu: Southwest Jiaotong University, 2021. [18] 李春昱, 宋冬利, 张卫华. 高速列车轴箱轴承载荷反演方法研究[J]. 噪声与振动控制, 2020, 40(5): 126−132. LI Chunyu, SONG Dongli, ZHANG Weihua. Research on load inversion method for axle box bearings of high-speed trains[J]. Noise and Vibration Control, 2020, 40(5): 126−132. [19] 李振乾, 池茂儒, 杨晨, 等. 基于铁道车辆振动加速度的轴承载荷反演研究[J/OL]. 铁道科学与工程学报: 1-12[2023-02-23].https://doi.org/10.19713/j.cnki.43-1423/u.T20221127. DOI: 10.1 9713/j.cnki.43-1423/u.T20221127. LI Zhenqian, CHI Maoru, YANG Chen, et al. Research on bearing force inversion identification method based on railway vehicle acceleration[J/OL]. Journal of Railway Science and Engineering:1-12[2023-02-23].https://doi.org/10.19713/j.cnki.43-1423/u.T20221127.DOI:10.19713/j.cnki.43-1423/u.T20221127. [20] 黄小平, 王岩. 卡尔曼滤波原理及应用[M]. 北京: 电子工业出版社, 2015:16 −38. HUANG Xiaoping, WANG Yan. Principle and application of Kalman filter[M]. Beijing: Electronic Industry Press, 2015: 16 −38. [21] 徐宁, 李强, 任尊松, 等. 考虑一系悬挂局部细化的车辆垂向系统振动传递特性研究[J]. 机械工程学报, 2021, 57(10): 106−117. XU Ning, LI Qiang, REN Zunsong, et al. Study on the vibration transfer characteristics of vertical vehicle system considering local refinement of primary suspension[J]. Journal of Mechanical Engineering, 2021, 57(10): 106−117. [22] 翟婉明. 车辆-轨道耦合动力学[M]. 北京: 科学出版社, 2015. ZHAI Wanming. Vehicle track coupling dynamics[M]. Beijing: Science Press, 2015. [23] 王学斌, 徐建宏, 张章. 卡尔曼滤波器参数分析与应用方法研究[J]. 计算机应用与软件, 2012, 29(6): 212-215. WANG Xuebin, XU Jianhong, ZHANG Zhang. On analysis and application approach for Kalman filter parameters[J]. Computer Applications and Software, 2012, 29(6): 212-215. [24] 邓忠民, 陈志国, 常振国. 基于小生境遗传算法的结构频响函数模型确认[J]. 振动与冲击, 2015, 34(23): 93-98. DENG Zhongmin, CHEN Zhiguo, CHANG Zhenguo. A structural FRF model validation method based on niching genetic algorithm[J]. Journal of Vibration and Shock, 2015, 34(23): 93-98. [25] 刘爱军, 杨育, 邢青松, 等. 含精英策略的小生境遗传退火算法研究及其应用[J]. 中国机械工程, 2012, 23(5): 556-563. LIU Aijun, YANG Yu, XING Qingsong, et al. Research on niche genetic annealing algorithm with elite strategy and its applications[J]. China Mechanical Engineering, 2012, 23(05): 556-563. [26] 张峰峰, 张欣, 陈龙, 等. 采用改进遗传算法优化神经网络的双目相机标定[J]. 中国机械工程, 2021, 32(12): 1423-1431. ZHANG Fengfeng, ZHANG Xin, CHEN Long, et al. Binocular camera calibration based on BP neural network optimized by improved genetic algorithm. China Mechanical Engineering, 2021, 32(12): 1423-1431. [27] 王蔚, 吴兴文, 周橙, 等. 基于小生境遗传算法的高速动车组稳定性优化与灵敏度分析[J]. 铁道学报, 2021, 43(7):26-33. WANG Wei,WU Xingwen,ZHOU Cheng,et al. Investigation on Stability Optimization and Parameter Sensitivity Analysis of High-speed Train Using Niche Genetic Algorithm[J]. Journal of the China Railway Society, 2021, 43(7): 26-33.

PDF(1803 KB)

Accesses

Citation

Detail

段落导航
相关文章

/