基于精细传递矩阵法的气囊隔振器横向刚度特性分析

成玉强1,2,蔡存光1,2,高华1,2,帅长庚1,2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 61-68.

PDF(1381 KB)
PDF(1381 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 61-68.
论文

基于精细传递矩阵法的气囊隔振器横向刚度特性分析

  • 成玉强1,2,蔡存光1,2,高华1,2,帅长庚1,2
作者信息 +

Transverse stiffness characteristics analysis of air springs based on the precise transfer matrix method

  • CHENG Yuqiang1,2,CAI Cunguang1,2,GAO Hua1,2,SHUAI Changgeng1,2
Author information +
文章历史 +

摘要

构建并求解了预载条件下气囊隔振器的囊体力学模型,提出了一种气囊隔振器横向刚度特性的参数化计算方法。在考虑囊体预应力的条件下构建了囊体力学模型,引入位移中间向量并采用精细积分法推导了囊体状态向量间的传递矩阵,利用迭代法解析了囊体状态向量、内部压力以及结构参数之间的耦合变化关系,基于边界条件完成了囊体刚度的参数化求解,结合理想气体刚度模型完成了气囊隔振器横向刚度特性的计算分析。对比试验结果,验证了横向刚度特性计算方法的正确性,探究了主要设计参数对刚度特性的影响规律。

Abstract

The bellows mechanical model of the air spring under preload conditions is constructed and solved, and a parametric calculation method of the transverse stiffness characteristics of the air spring is proposed. The bellows mechanical model is constructed under the condition of preload, and the transfer matrix between the bellows state vectors is derived by introducing the intermediate displacement vectors and using the precision integration method. The coupling relationship between the state vectors of the bellows, the internal pressure and the structural parameters is analyzed by the iterative method. Based on the boundary conditions, the parametric solution of the capsule stiffness is completed, and the calculation and analysis of the transverse stiffness characteristics of the air spring are completed by combining with the perfect pneumatic stiffness model. The correctness of the calculation method of transverse stiffness characteristics is verified by comparing the test results, and the influence law of the main design parameters on the stiffness characteristics is investigated.

关键词

气囊隔振器 / 纤维增强复合材料 / 横向刚度特性 / 薄壳理论 / 精细传递矩阵法

Key words

air spring / cord-reinforced composite / transverse stiffness characteristics / thin shell theory / precise transfer matrix method

引用本文

导出引用
成玉强1,2,蔡存光1,2,高华1,2,帅长庚1,2. 基于精细传递矩阵法的气囊隔振器横向刚度特性分析[J]. 振动与冲击, 2024, 43(4): 61-68
CHENG Yuqiang1,2,CAI Cunguang1,2,GAO Hua1,2,SHUAI Changgeng1,2. Transverse stiffness characteristics analysis of air springs based on the precise transfer matrix method[J]. Journal of Vibration and Shock, 2024, 43(4): 61-68

参考文献

[1] Qi H, Chen Y, Zhang N, et al. Improvement of both handling stability and ride comfort of a vehicle via coupled hydraulically interconnected suspension and electronic controlled air spring[J]. Proceedings of the Institution of Mechanical Engineers, Part D. Journal of Automobile Engineering, 2020, 234(2-3):552-571. [2] Zhang M, Luo S, Gao C, et al. Research on the mechanism of a newly developed levitation frame with mid-set air spring[J]. Vehicle System Dynamics International Journal of Vehicle Mechanics & Mobility, 2018:1-20. [3] 刘渊博, 李明, 何琳. 船用气囊隔振系统的非线性动力学特性[J]. 船舶力学, 2015(11):1385-1392. LIU Yuan-bo, LI Ming, HE Lin. Nonlinear dynamics of the marine air-bag vibration isolation system[J]. Journal of Ship Mechanics, 2015(11):1385-1392. [4] Li Y, He L, Shuai C, et al. Improved hybrid isolator with maglev actuator integrated in air spring for active-passive isolation of ship machinery vibration[J]. Journal of Sound Vibration, 2017, 407:226-239. [5] Li X , He Y , Liu W , et al. Research on the vertical stiffness of a rolling lobe air spring[J]. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit, 2015:1-12. [6] Xu L. Theoretical modeling of the vertical stiffness of a rolling lobe air spring[J]. Science Progress, 2020, 103(3):1-21. [7] 戚壮, 李芾, 丁军君, 等. 高速动车组空气弹簧横向非线性动力学模型研究[J]. 中国铁道科学, 2014, 35(6):111-118. QI Zhuang, LI Fu, DING Jun-jun, et al. Lateral Nonlinear Dynamics Model of Air Spring for High Speed EMU[J]. China Railway Science, 2014, 35(6):111-118. [8] 陈焕江, 苏鹏, 程文露. 自由膜式空气弹簧水平刚度的研究[J]. 铁道车辆, 2016, 54(3):1-3. CHEN Huan-jiang, SU Peng, CHENG Wen-lu. Research on the horizontal stiffness of free diaphragm air spring[J]. Rolling Stock, 2016, 54(3):1-3. [9] 张俊玲, 王浩宇. 初始内压和帘线间距对膜式空气弹簧横向刚度特性影响的有限元分析[J]. 橡胶工业, 2013, 60(4): 233-238. ZHANG Jun-ling, WANG Hao-yu. Effect of initial internal pressure and cords distance on lateral stiffness of rolling lobe air spring by using finite element analysis[J]. China Rubber Industry, 2013, 60(4): 233-238. [10] Liu H, Lee J C. Model development and experimental research on an air spring with auxiliary reservoir[J]. International Journal of Automotive Technology, 2011, 12(6):839-847. [11] Bruni S, Vinolas J, Berg M, et al. Modelling of suspension components in a rail vehicle dynamics context[J]. Vehicle System Dynamics, 2011, 49(7):1021-1072. [12] Li X, Li T. Research on vertical stiffness of belted air springs[J]. Vehicle System Dynamics, 2013,51(11):1655-1673. [13] Erin C, Wilson B, Zapfe J. An improve model of a pneumatic vibration isolator: Theory and Experiment[J]. Journal of Sound and Vibration, 1998, 218(1):81-101. [14] Chen J, Yin Z, Yuan X, et al. A refined stiffness model of rolling lobe air spring with structural parameters and the stiffness characteristics of rubber bellows[J]. Measurement, 2021, 169:108355. [15] Zhu H, Yang J, Zhang Y, et al. Nonlinear dynamic model of air spring with a damper for vehicle ride comfort[J]. Nonlinear Dynamics, 2017, 89:1545-1568. [16] Qi Z, Li F, Yu D. A three-dimensional coupled dynamics model of the air spring of a high-speed electric multiple unit train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(1): 3-18. [17] 袁春元, 周孔亢, 吴琳琪, 等. 车用空气弹簧有限元分析方法[J]. 机械工程学报, 2009, 45(6):262-266. YUAN Chun-yuan, ZHOU Kong-kang, WU Lin-qi, et al. Finite element method to analyze vehicle air spring[J]. Journal of Mechanical Engineering, 2009, 45(6):262-266. [18] 李 静, 丁明慧, 李立刚, 等. 基于活塞形状的空气弹簧动特性分析与参数优化[J]. 吉林大学学报(工学版), 2018, 48 (2): 355-363. LI Jing, DING Ming-hui, LI Li-gang, et al. Dynamic characteristics analysis and optimization of air spring based on the piston shape[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(2): 355-363. [19] 成玉强, 帅长庚, 徐国敏. 气囊隔振器耐压强度研究[J]. 船舶力学, 2021, 25(7):7. CHENG Yu-qiang, SHUAI Chang-geng, XU Guo-min. Research on the strength of air spring[J]. Journal of Ship Mechanics, 2021, 25(7):7. [20] Li H, Pang F, Wang X, et al. Free vibration analysis for composite laminated doubly-curved shells of revolution by a semi-analytical method[J]. Composite Structures, 2018, 201: 86-111. [21] 徐芝纶. 弹性力学[M]. 北京: 高等教育出版社, 2016. Xu Zhi-lun. Elasticity[M]. Beijing: Higher Education Press, 2016. [22] 沈观林, 胡更开, 刘彬. 复合材料力学(第2版)[M]. 北京:清华大学出版社, 2013. SHEN Guan-lin, HU Geng-kai, LIU bin. Mechanical of composite materials(second edition)[M]. Beijing: Tsinghua university press, 2013. [23] Cheng Y, Shuai C, Gao H. Research on the mechanical model of cord-reinforced air spring with winding formation[J]. Science and Engineering of Composite Materials, 2021, 28 (1):628-637. [24] Flugge W. Stresss in shells[M]. Springer Verlag, 1960. [25] 江晨半, 王献忠, 左营营. 基于精细传递矩阵法的变厚度圆柱壳自由振动分析[J]. 振动与冲击, 2020, 39(3):134-141. Jiang Chen-ban, Wang Xian-zhong, Zuo Ying-ying. Free vibration analysis for cylindrical shells with variable thickness based on precise transfer matrix method[J]. Journal of Vibration and Shock, 2020, 39(3):134-141.

PDF(1381 KB)

Accesses

Citation

Detail

段落导航
相关文章

/