1000MW超超临界二次再热机组在降低能耗、减少污染方面具有显著优势,近年来这类机组投运量增长显著。汽轮发电机作为电厂的关键核心动力装备,其基础结构振动控制是保障电厂安全可靠运行的重要环节。二次再热机组汽轮发电机轴系长、转子重,为降低振动影响确保机组平稳安全运行,以往1000MW超超临界二次再热机组汽轮发电机基础普遍采用弹簧隔振基础。本文围绕1000MW超超临界二次再热机组汽轮发电机刚性框架基础的动力性能开展数值分析和模型试验研究,结果表明:1000MW超超临界二次再热机组汽轮发电机刚性框架基础具有良好的动力性能,正常运转阶段各扰力点振动线位移响应幅值不大于20μm,满足我国标准限值要求。研究成果可为1000MW超超临界二次再热机组汽轮发电机基础结构选型和设计提供技术支撑。
Abstract
1000MW ultra-supercritical double reheat units have significant advantages in reducing energy consumption and pollution, and the number of units in operation has increased significantly in recent years. Turbogenerator is the key equipment of power plant and its infrastructure vibration control is important to ensure the safe and reliable operation of the power plant. The turbogenerator shaft system of the double reheat units is long and the rotor is heavy. In order to reduce the influence of vibration and ensure the stable and safe operation of the units, the spring vibration isolation foundation is widely used in the turbogenerator foundation of 1000MW ultra-supercritical double reheat units. In this paper, numerical analysis and model test are carried out on the dynamic performance of rigid frame foundation of turbogenerator for 1000MW ultra-supercritical double reheat unit. The results show that the turbogenerator rigid frame foundation of 1000MW ultra-supercritical double reheat units has good dynamic performance. In the normal operation stage, the amplitude of the vibration displacement response of each disturbance point is not more than 20 μ m, which meets the requirements of the national standard limit. The research results can provide technical support for the turbogenerator infrastructure design of 1000MW ultra-supercritical double reheat units.
关键词
二次再热机组 /
汽轮发电机基础 /
刚性框架基础 /
动力性能 /
模型试验。
{{custom_keyword}} /
Key words
double reheat units /
turbogenerator foundation /
rigid frame foundation /
dynamic performance /
scale model test.
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 国家发展改革委,国家能源局.“十四五”现代能源体系规划[EB/OL]. (2022.1.29),www.ndrc.gov.cn/xxgk/zcfb/ghwb/202203/t20220322_1320016.html?state=123.
[2] 赵志刚,1000MW超超临界二次再热机组热力性能分析与实验研究[D].华中科技大学,武汉,2020.
ZHAO Zhi-gang. Thermal performance analysis and experimental research of 1000MW double reheat ultra-supercritical power plant[D]. Huazhong University of Science and Technology, Wuhan,2020.
[3] 王文飚,薛建明,谭锐等. 二次再热超超临界汽轮发电机组轴系动力响应特性研究[J]. 汽轮机技术,2020,62(5):363-366.
WANG Wen-biao, XUE Jian-ming, TAN Rui, et al. Reserch on the rotor dynamic response characteristics of the double reheat ultra supercritical turbo-generator[J].Turbine Technology, 2020, 62(5): 363-366.
[4] 翟荣民,周建军,李兴利. 评述汽轮发电机基础动力优化设计的发展[J].电力建设,2001,22(3):12-18,20.
ZHAI Rong-min, ZHOU Jian-jun, LI Xing-li. Comments on development of optimized design of turbine-generator foundation power[J]. Eletric Power Construction, 2001, 22(3):12-18,20.
[5] 马绅.大型汽轮发电机基础设计研究与实践[M].中国电力出版社,2012,北京.
MA Shen. Research and practice of design for large-scale turbogenerator foundation[M]. China Electric Power Press,2012,Beijing.
[6] 阳光,陈仁杰,朱佳琪.1000MW超超临界二次再热燃煤发电示范工程总体设计方案[J].中国电力,2017,50(6):12-16,31.
YANG Guang, CHEN Rren-jie, ZHU Jia-qi. General design of 1000 MW ultra-supercritical double reheat demonstration power plant[J]. Electric Power, 2017,50(6):12-16,31.
[7] 史进渊,阳虹,张宏涛等.我国汽轮机产品的新进展与发展方向[J]. 动力工程学报,2021,41(7):542-550.
SHI Jin-yuan, YANG Hong, ZHANG Hong-tao, et al. New progress and development direction of steam turbines in China[J].Journal of Chinese Society of Power Engineering, 2021, 41(7):542-550.
[8] 苑森,赵春晓.汽轮发电机基础数值模拟的探讨[J].武汉大学学报(工学版),2018,51(增刊):186-191
YUAN Sen, ZHAO Chun-xiao. Discussion on numerical simulation of turbo-generator foundation[J]. Engineering Journal of Wuhan University, 2018,51(sup):186-191.
[9] 中华人民共和国住房和城乡建设部,国家市场监督管理总局.GB50040-2020 动力机器基础设计标准[S].北京:中国计划出版社,2020.
[10] 徐建.动力机器基础设计指南[M].中国建筑工业出版社,2022,北京.
Xu Jian. Design guide for dynamic machine foundation[M]. China Architecture & Building Press, 2022, Beijing
[11] 孙嘉麟,孙燕飞,林少波.高转速汽轮发电机基础动力分析标准对比研究[J].电力勘测设计,2021,3:26-31.
SUN Jia-lin, SUN Yan-fei, LIN Shao-bo. Comparison of dynamic analysis standards for high speed turbo-generator foundation[J]. Electric Power Survey & Design, 2021,3:26-31.
[12] 中华人民共和国住房和城乡建设部,国家市场监督管理总局.GB/T 51228-2017 建筑振动荷载标准[S].北京:中国计划出版社,2017
[13] 中华人民共和国住房和城乡建设部,国家市场监督管理总局.GB 50868-2013 建筑工程容许振动标准[S].北京:中国计划出版社,2013
[14] 代泽兵,邵晓岩,赵春莲等. 1000MW汽机框架式基础动力特性模型试验研究[C]. 2006中国电机工程学会年会论文集, 河南郑州,2034-2037.
[15] 邵晓岩,屈铁军,周建章.运用LMS 振动采集仪进行汽轮发电机基础振动试验研究[C]. 2012年LMS中国用户大会论文集,桂林,1-22.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}