基于柔性包袋阻尼器的蜂窝芯子暴露平台降冲击研究

肖望强1,黄自杰1,刘汉武2,钱海鲲2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 96-104.

PDF(2135 KB)
PDF(2135 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 96-104.
论文

基于柔性包袋阻尼器的蜂窝芯子暴露平台降冲击研究

  • 肖望强1,黄自杰1,刘汉武2,钱海鲲2
作者信息 +

Astudy on impact reduction of a honeycomb core exposed platform based on a flexible bag damper

  • XIAO Wangqiang1,HUANG Zijie1,LIU Hanwu2,QIAN Haikun2
Author information +
文章历史 +

摘要

暴露平台作为搭载火工分离装置和载荷适配器等精密仪器的构件是航天飞行器中重要组成部分,暴露平台在火工冲击环境下会产生高频、瞬态和高量级特点的火工冲击响应。高量级的火工冲击易对星载设备中的敏感元器件造成损伤从而产生难以估量的损失,故有效地控制星箭暴露平台在火工环境下的高频冲击对航空航天领域具有巨大的意义。本文运用蜂窝芯子式的柔性包袋阻尼技术对暴露平台进行降冲击研究,通过对柔性包袋阻尼系统模型进行离散元耗能仿真设计,分析粒子材质、粒径、填充率及包袋膜厚度对柔性包袋阻尼器降冲击性能的影响,获取柔性包袋阻尼器的最优特征参数。通过冲击实验得出安装不同参数柔性包袋阻尼器暴露平台的冲击响应谱并与仿真结果进行对比,验证了模型的正确性和柔性包袋阻尼技术的有效性。仿真和实验结果表明,柔性包袋阻尼器降冲击性能最佳的粒子材质为铁基合金,最优粒径为2mm,最优填充率为95%,最优膜厚为0.2mm。最优参数的柔性包袋阻尼器降冲击效果达到了58.13%,达到了梦天载荷仓暴露平台的降冲击要求。

Abstract

The exposed platform, as a component equipped with precision instruments such as pyrotechnic separation devices and load adapters, is an important component of aerospace vehicles. Under pyrotechnic impact environments, the exposed platform will generate high-frequency, transient, and high-order pyrotechnic impact responses. High level pyrotechnic impacts can easily cause damage to sensitive components in onboard equipment, resulting in incalculable losses. Therefore, effectively controlling the high-frequency impact of the satellite rocket exposure platform in pyrotechnic environments is of great significance in the aerospace field. This article uses the honeycomb core type flexible bag damping technology to conduct impact reduction research on the exposed platform. Through discrete element energy dissipation simulation design of the flexible bag damping system model, the influence of particle material, particle size, filling rate, and bag film thickness on the impact reduction performance of the flexible bag damper is analyzed, and the optimal characteristic parameters of the flexible bag damper are obtained. The impact response spectra of the exposed platform with flexible bag dampers with different parameters were obtained through impact experiments and compared with simulation results, verifying the correctness of the model and the effectiveness of flexible bag damping technology. The simulation and experimental results show that the flexible bag damper with a filling rate of 95% and a film thickness of 0.2mm and a material of iron based alloy with 2mm particles has the best impact reduction performance. The optimal parameter of the flexible bag damper has an impact reduction effect of 58.13%, meeting the impact reduction requirements of the Mengtian Load Warehouse Exposure Platform.

关键词

暴露平台 / 柔性包袋阻尼器 / 离散元

Key words

Exposure platform / Bean bag damper / Discrete element

引用本文

导出引用
肖望强1,黄自杰1,刘汉武2,钱海鲲2. 基于柔性包袋阻尼器的蜂窝芯子暴露平台降冲击研究[J]. 振动与冲击, 2024, 43(4): 96-104
XIAO Wangqiang1,HUANG Zijie1,LIU Hanwu2,QIAN Haikun2. Astudy on impact reduction of a honeycomb core exposed platform based on a flexible bag damper[J]. Journal of Vibration and Shock, 2024, 43(4): 96-104

参考文献

[1]赵相禹,赵春娟,张雷,陈善搏,石有胜.微纳卫星火工冲击载荷缓冲装置设计及验证[J].振动与冲击,2023,42(03):187-192. ZHAO Xiang-yu, ZHAO Chun-juan, ZHANG Lei, et al. Design and verification of micro nano satellite pyrotechnic shock load buffer device [J]. Vibration and Shock, 2023,42 (03): 187-192 [2]曹乃亮,徐宏,辛宏伟,李志来.冲击载荷作用下火工分离保护装置的建模与分析[J].振动与冲击,2015,34(08):20-25. CAO Nai-liang, XU Hong, XIN Hong-wei, et al. Modeling and analysis of pyrotechnic separation protection devices under impact load [J]. Vibration and Impact, 2015,34 (08): 20-25 [3] 高滨. 火工驱动分离装置的应用[J].航天返回与遥感,2004(01):55-59. GAO Bin. Application of initiating explosive device [J] Aerospace return and remote sensing, 2004 (01): 55-59 [4] 唐科,胡振兴,曲展龙,等.典型航天火工装置降冲击技术研究[J].宇航总体技术,2022,6(05):1-9. TANG Ke, HU Zhen-xing, QU Zhan-long. Research on shock reduction technology of typical aerospace initiating devices [J]. Aerospace General Technology, 2022,6 (05): 1-9 [5] 赵宏达, 孙毅, 丁继锋, 等. 基于轻气炮加载的火工冲击环境模拟技术研究[J].振动与冲击,2021,40(22):1-10. ZHAO Hong-da, SUN Yi, DING Ji-feng, et al. Research on simulation technology of initiating explosive impact environment based on light gas gun loading [J] Vibration and shock, 2021,40 (22): 1-10 [6] 李青, 任德鹏, 杜青. 航天器火工冲击环境数据外推技术研究[J].宇航学报,2021,42(05):650-659. LI Qin, REN De-peng, DU Qin, et al. Research on extrapolation technology of spacecraft initiating explosive impact environmental data [J] Journal of Astronautics, 2021,42 (05): 650-659 [7] 肖望强,戴宇,孙璟,等.火工分离用颗粒阻尼降冲击装置研究[J].宇航总体技术,2022,6(05):18-25. XIAO Wang-qiang, DAI Yu, SUN Jing, et al. Research on particle damping impact reduction device for pyrotechnics separation [J]. Aerospace General Technology, 2022,6 (05): 18-25 [8] 刘晨, 张欢, 朱剑涛, 等. 电子产品抗火工冲击环境设计方法[J].航天器工程,2018,27(03):45-51. LIU Chen, ZHANG Huang, ZHU Jian-tao, et al. Design method of anti initiating explosive impact environment for spacecraft electronic products [J] Spacecraft engineering, 2018,27 (03): 45-51 [9] 叶耀坤,丁锋,李晓刚,等.某航天器火工装置作动后壳体滞后裂纹机理研究[J].宇航总体技术,2022,6(05):40-48. YE Yao-kun, DING Feng, LI Xiao-gang, et al. Study on the mechanism of hysteresis cracks in the shell of a spacecraft after initiating explosive device actuation [J]. Aerospace General Technology, 2022,6 (05): 40-48 [10] 张陶, 於津. 冲击载荷下某火工品组合件断火故障试验研究[J].质量与可靠性,2009(06):23-24+28. ZHANG Tao, YU Jin. Experimental study on ignition failure of a initiating explosive device assembly under impact load [J] Quality and reliability, 2009 (06): 23-24 + 28 [11] 唐昆. 火工冲击环境模拟及减冲装置的设计[D].哈尔滨工业大学,2019.DOI:10.27061/d.cnki.ghgdu.2019.0 03740. TANG Kun. Simulation of initiating explosive impact environment and design of impact reduction device [D] Harbin Institute of technology, 2019 DOI:10.27061/d.cnki. ghgdu. 2019.003740. [12] 赵象润,严楠,郭崇星,等.金属橡胶隔振器对火工分离螺母冲击响应的影响[J].含能材料,2021,29(09):848-854. ZhAO Xiang-run, YAN Nan, GUO Chong-xing, et al. The influence of metal rubber vibration isolator on the impact response of pyrotechnic separation nut [J]. Energetic Materials, 2021,29 (09): 848-854 [13] 赵宏达,丁继锋,郝志伟,等.复杂航天器结构火工冲击环境预示方法研究[J].宇航学报,2020,41(01):35-43. ZHAO Hong-da, DING Ji-feng, HAO Zhi-wei, et al. Study on prediction method of pyrotechnic impact environment of complex spacecraft structures [J]. Journal of Astronautics and Astronautics, 2020,41 (01): 35-43 [14] BARRETT S , KACENA W J. Methods of attenuating pyrotechnic shock[J]. The Shock and Vibration Bulletin, 1972(1) [15] Paul W. Whole-spacecraft vibration isolation for broadband attenuation[R].New York: IEEE, 2000 [16] 任怀宇. 粘弹阻尼减振在导弹隔冲击结构中的应用[J].宇航学报,2007(06):1494-1499. REN Huai-yu. Application of viscoelastic damping in missile impact isolation structure [J] Journal of Astronautics, 2007 (06): 1494-1499 [17] 邵益勤, 梁小燕, 李伟. 柔性约束颗粒冲击阻尼技术及应用[J].汽车工程, 1999(06):358-363+343. SHAO Yi-qin, LIANG Xiao-yan, LI Wei. Flexible constrained particle impact damping technology and its application [J] Automotive Engineering, 1999 (06): 358-363 + 343 [18] 李伟, 朱德懋, 胡选利, 等. 豆包阻尼器的减振特性研究[J].航空学报,1999(02):73-75. LI Wei, ZHU De-mao, HU Xuan-li, et al. Study on vibration reduction characteristics of bean bag damper [J] Journal of Aeronautics, 1999 (02): 73-75 [19] MISHRA B K, MURTY C V R. On the determination of contact parameters for realistic DEM simulation of ball mills[J]. Powder Technology, 2001, 115(3):290-297. [20] Xiao W Q, Huang Y X, Jiang H, et al. Effect of powder material on vibration reduction of gear system in centrifugal field. Powder Technology, 2016(294). [21] Mohamed A, Xavier P, Craig P. DROD: A hybrid biomimetic undulatory and reciprocatory drill: Quantitative analysis and numerical study [J]. Acta Astronautica. 2021(05)182: 131-143. [22] Nazeer A, Ranganath R, Ghosal A, Modeling and experimental study of a honeycomb beam filled with damping particles, [J]. Sound and Vibration. 2017, 391: 20-34. [23] Andrei T, Raed L, Sveinung L. A numerical model for simulating the effect of propeller flow in ice management[J]. Cold Regions Science and Technology. 2017 (142): 139–152. [24] Xiao W Q, Chen Z W, Pan T L, et al. Research on the impact of surface properties of particle on damping effect in gear transmission under high speed and heavy load[J]. Mechanical Systems and Signal Processing, 2018(98).

PDF(2135 KB)

315

Accesses

0

Citation

Detail

段落导航
相关文章

/