一种用于误差通道预辨识的气动冲击锤特性分析

李锋1,杨铁军1,吴磊2,徐阳2,黎文科1,李新辉1,朱明刚1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (5) : 166-172.

PDF(1970 KB)
PDF(1970 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (5) : 166-172.
论文

一种用于误差通道预辨识的气动冲击锤特性分析

  • 李锋1,杨铁军1,吴磊2,徐阳2,黎文科1,李新辉1,朱明刚1
作者信息 +

Characteristics analysis of a pneumatic impact hammer used for secondary path pre-identification

  • LI Feng1,YANG Tiejun1,WU Lei2,XU Yang2,LI Wenke1,LI Xinhui1,ZHU Minggang1
Author information +
文章历史 +

摘要

本文针对船舶机械设备主动减振系统的误差通道预辨识问题,研制了一种气动冲击锤作为激励力源。为了解气锤的特性,对其开展仿真和试验研究。首先通过建立气锤气体做功过程的热-机耦合模型和锤头冲击过程的动力学模型,得到锤头冲击速度、冲击力及冲击时间之间的数学物理关系,对比分析活塞组件工作过程的仿真和试验测试结果;然后探讨复位弹簧刚度、活塞与气缸壁之间的粘性阻尼、气缸内的死区容积等结构动力学参数对锤头冲击速度的影响。最后对气锤冲击力的仿真和测试结果进行对比分析,并应用气锤对弹性结构进行传递函数测试,与传统力锤激励的测试结果进行比较,验证气锤对结构动力学特性参数测试的可行性和有效性。

Abstract

A pneumatic impact hammer was developed as force excitation for the secondary path pre-identifying of an active vibration control system for marine machine. Simulation and experimental investigations were carried out to understand its characteristics. Firstly, the thermal-mechanic coupling model of working process and impacting model of the pneumatic hammer are derived and the relationship of impact velocity, impact force and duration time are derived. Simulation and measurements of piston group working process are compared and analyzed. Then the effects of spring stiffness, viscous damper of piston and dead volume on the hammer impact velocity are discussed. Finally, impact forces from calculation and measuring are compared, the comparison of transfer functions of a flexible structure excited by the pneumatic hammer and a traditional hammer is also made. The feasibility and effectiveness of the developed pneumatic hammer are verified.

关键词

主动减振 / 误差通道预辨识 / 气动冲击锤 / 仿真和试验研究

Key words

Active vibration control / Secondary path pre-identifying / Pneumatic impact hammer / Simulation and experimental investigation

引用本文

导出引用
李锋1,杨铁军1,吴磊2,徐阳2,黎文科1,李新辉1,朱明刚1. 一种用于误差通道预辨识的气动冲击锤特性分析[J]. 振动与冲击, 2024, 43(5): 166-172
LI Feng1,YANG Tiejun1,WU Lei2,XU Yang2,LI Wenke1,LI Xinhui1,ZHU Minggang1. Characteristics analysis of a pneumatic impact hammer used for secondary path pre-identification[J]. Journal of Vibration and Shock, 2024, 43(5): 166-172

参考文献

[1]史英沙,黎胜. 船体梁振动的反共振频率配置设计[J]. 振动与冲击, 2021, 40(3): 133-138, 164. SHI Ying-sha, Li Sheng. Hull girder vibration design based on anti-resonance frequencies allocation[J]. Journal of Vibration and Shock, 2021, 40(3): 133-138, 164. [2]田佳彬,黄自杰,王娟,等. 基于粒子阻尼器的船舶推进轴系减振研究[J]. 振动与冲击, 2022, 41(24): 97-103, 149. TIAN Jia-bin, HUANG Zi-jie, WANG Juan, et al. A study on vibration reduction of ship propulsion shafting based on particle damper[J]. Journal of Vibration and Shock, 2022, 41(24): 97-103, 149. [3]ZHANG C, WANG G, WEI D, et al. The research on the transverse vibration active control model of ship propulsion shaft with the active control force on the bearing support[J]. Ocean Engineering, 2022, 266: 112722. [4]YANG T J, SHUAI Z J, SUN Y, et al. Active vibration isolation system for a diesel engine[J]. Noise Control Engineering Journal, 2012, 60(3): 267-282 [5]杨铁军, 靳国永, 刘志刚. 船舶动力装置振动的主动控制[M]. 哈尔滨:哈尔滨工程大学出版社, 2011. YANG Tie-jun, JIN Guo-yong, LIU Zhi-gang. Active vibration control of marine power plant[M]. Harbin: Harbin Engineering University Press, 2011. [6]John W. Sensor and actuator networks for acoustic signature monitoring and control[J]. Undersea Defense Technology, 1999. [7]Paulstra Industry. Active control systems of noise and vibrations. https://www.paulstra-industry.com/en/ranges/elastomer-mounts/ active-control-systems-of-noise-and-vibrations, 2022. [8]Morgan D R. An analysis of multiple correlation cancellation loops with a filter in the auxiliary path[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 2003, 28(4):454-467. [9]Lopes P, Piedade M S. Effects of secondary path modeling errors on the Modified FX-LMS algorithm for active noise control[C]// Acoustics, Speech, & Signal Processing, on IEEE International Conference. Salt Lake City: IEEE, 2001. [10]杨铁军,李新辉,朱明刚,等. 船用柴油发电机组主动减振试验研究[J]. 振动工程学报,2013, 2(26):160-168. YANG Tie-jun, LI Xin-hui, ZHU Ming-gang, et al. Experimental investigation of active vibration control for diesel engine generators in marine applications[J]. Journal of Vibration Engineering, 2013, 2(26):160-168. [11]LI Feng, ZHU Ming-gang, WU Lei, et. al. A pre-identifying method of secondary path for active vibration control system[C]. The 19th Asia Pacific Vibration Conference. Qingdao: APVC, 2022. [12]苗登雨,唐火红,骆敏舟等. 重载油缸坯料搬运系统模态分析与结构改进[J]. 机械设计与研究, 2013, 29(6): 99-103. MIAO Deng-yu, TANG Huo-hong, LUO Min-zhou, et al. Modal analysis and structural modification of the heavy-duty oil cylinder billet transporting system[J]. Machine Design & Research, 2013, 29(6): 99-103. [13]李正农,赵帝,钟旻,等. 树木动力特性的实测和有限元分析研究[J]. 振动与冲击, 2022, 41(2): 271-280. LI Zheng-nong, ZHAO Di, ZHONG Min, et al. Measurement and finite element analysis of the dynamic characteristics of trees[J]. Journal of Vibration and Shock, 2022, 41(2): 271-280. [14]仝宁可,杨铁军.气动式激励力锤动态特性研究[C]. 第十二届全国振动理论及应用学术会议,南宁:NVTA, 2017. 856-862. TONG Ning-ke, YANG Tie-jun. Study on Dynamic Characteristics of Pneumatic Excitation Hammer[C]. The 12th National Conference on Vibration Theory and Application, Nanning: NVTA, 2017. 856-862. [15]郭伟,朱瑞华,闫振奎. 关于气体调压阀进出口压力、流量和开度间关系的计算方法[J]. 石化技术, 2015, (8): 83-83. GUO Wei, ZHU Rui-hua, YAN Zhen-kui. Calculation methods for flow, I/O pressure, and opening of gas pressure regulating valve[J]. Petrochemical Industry Technology, 2015(8): 83-83. [16]吉恒松,王谦,韩新月等. 热力学第一定律在充气过程求解中的应用[J]. 广州化工, 2013, 41(22): 165-167. JI Heng-song, WANG Qian, HAN Xin-yue, et al. Application of the first law of thermodynamics in solving inflatable process[J]. Guangzhou Chemical Industry, 2013, 41(22): 165-167. [17]金栋平,胡海岩. 碰撞振动与控制[M]. 北京:科学出版社, 2005. JIN Dong-ping, HU Hai-yan. Advances in vibro-impact dynamics and control of mechanical systems[M]. Beijing: Science Press, 2005. [18]Sun B H. Hertz elastic dynamics of two colliding elastic spheres[J]. Results in Physics, 2021, 30: 104870.

PDF(1970 KB)

Accesses

Citation

Detail

段落导航
相关文章

/