基于共同稀疏贝叶斯学习的多频等效源近场声全息方法

张凤敏,张小正,周蓉,张永斌,毕传兴

振动与冲击 ›› 2024, Vol. 43 ›› Issue (5) : 260-267.

PDF(2163 KB)
PDF(2163 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (5) : 260-267.
论文

基于共同稀疏贝叶斯学习的多频等效源近场声全息方法

  • 张凤敏,张小正,周蓉,张永斌,毕传兴
作者信息 +

Multi-frequency equivalent source near-field acoustic holography method based on common sparse Bayesian learning

  • ZHANG Fengmin,ZHANG Xiaozheng,ZHOU Rong,ZHANG Yongbin,BI Chuanxing
Author information +
文章历史 +

摘要

现有基于压缩感知的等效源近场声全息方法通常采用基于单频处理的单测量向量模型进行声场重建,此模型存在噪声鲁棒性较差以及重建精度不足的问题。实际中噪声源往往具有宽频特征,同一位置处不同频率的等效源源强聚集从而呈现共同稀疏特性,若充分利用源强的共同稀疏特性,可以改善重建性能。因此,本文提出一种基于共同稀疏贝叶斯学习的多频等效源近场声全息方法。在该方法中,首先采用多频协同处理,构建多频等效源近场声全息模型;然后为等效源源强施加共同稀疏约束,并使用共同稀疏贝叶斯学习方法求解等效源源强。与单频等效源近场声全息方法相比,所提方法可以获得更高的重建精度和更好的噪声鲁棒性。论文通过单极子声源仿真和小音箱实验验证了所提方法的优越性。

Abstract

Most of the current compressive sensing-based equivalent source method for near-field acoustic holography utilizes a single measurement vector model with single frequency processing for sound field reconstruction, but this model usually suffers from poor noise robustness and insufficient reconstruction accuracy. In fact, noise sources often have broadband characteristics, and the equivalent source strengths of different frequencies at the same location are grouped together to exhibit joint sparse characteristics, which can improve the reconstruction performance if the joint sparse characteristics of the source strengths are fully utilized. Therefore, the near-field acoustic holography based on multi-frequency jointly-sparse Bayesian learning equivalent source method is proposed in this paper. In this method, a near-field acoustic holographic model based on multi-frequency equivalent source method is first constructed using multi-frequency co-processing, then the joint sparse constraint is imposed on the equivalent source strengths and they are solved by the jointly-sparse Bayesian learning method. Compared with the conventional near-field acoustic holography based on single-frequency equivalent source method, the proposed method can obtain higher reconstruction accuracy and better noise robustness. The superiority of the proposed method is verified by simulations of monopole sources and an experiment of two small speakers.

关键词

近场声全息 / 等效源方法 / 共同稀疏贝叶斯学习 / 多频处理

Key words

Near-field acoustic holography / equivalent source method / jointly-sparse Bayesian learning / multi-frequency processing

引用本文

导出引用
张凤敏,张小正,周蓉,张永斌,毕传兴. 基于共同稀疏贝叶斯学习的多频等效源近场声全息方法[J]. 振动与冲击, 2024, 43(5): 260-267
ZHANG Fengmin,ZHANG Xiaozheng,ZHOU Rong,ZHANG Yongbin,BI Chuanxing. Multi-frequency equivalent source near-field acoustic holography method based on common sparse Bayesian learning[J]. Journal of Vibration and Shock, 2024, 43(5): 260-267

参考文献

[1] WILLAMS E G, MAYNARD J D, and SKUDRZYK E. Sound source reconstructions using a microphone array [J]. The Journal of the Acoustical Society of America, 1980, 68: 340-344. [2] VERONESI W A and MAYNARD J D. Nearfield acoustic holography NAH II: Holographic reconstruction algorithms and computer implementation [J]. The Journal of the Acoustical Society of America. 1987, 81(5): 1307–1322. [3] HALD J. Basic theory and properties of statistically optimized near-field acoustical holography[J]. The Journal of the Acoustical Society of America, 2009, 125(4): 2105-2120. [4] WU S F, and YU J. Reconstructing interior acoustic pressure fields via Helmholtz equation least-squares method[J]. The Journal of the Acoustical Society of America, 1998, 104(4): 2054-2060. [5] BAI M R. Application of BEM (boundary element method)‐based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries[J]. The Journal of the Acoustical Society of America, 1992, 92(1): 533-549. [6] KOOPMANN G H, SONG L and FAHNLINE J B. A method for computing acoustic fields based on the principle of wave superposition [J]. The Journal of the Acoustical Society of America, 1989, 86(5): 2433–2438 . [7] 毕传兴,陈心昭,陈剑,等.基于等效源法的近场声全息技术 [J].中国科学E辑:技术科学, 2005(05):535-548. BI Chuanxing, CHEN Xinzhao, CHEN Jian et al. Near-field acoustic holography based on the equivalent source method [J]. Science in China Series E: Science of Technology, 2005(05):535-548. [8] SHI Z, XIANG Y, and LU J, et al. Construction and selection of a directivity wave function improving ill-condition problems in equivalent source method based near-field acoustic holography [J]. AIP Advances, 2021, 11(7): 075220. [9] CANDES E J and WAKIN M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. [10] DONOHO D L. Compressed sensing [J]. IEEE Transaction Information Theory, 2006, 52(4): 1289-1306. [11] 樊小鹏,张鑫,褚志刚,等.分裂增广拉格朗日收缩反卷积声源识别算法 [J].振动与冲击,2020,39(23):141-147. FAN Xiaopeng,ZHANG Xin,CHU Zhigang et al. Split augmented lagrange contraction deconvolution algorithm for sound source identification [J]. Journal of Vibration and Shock, 2020,39(23):141-147. [12] CHU N, NING Y, and YU L, et al. Acoustic source localization in a reverberant environment based on sound field morphological component analysis and alternating direction method of multipliers [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13. [13] CHARDON G, DAUDET L, PEILLOT A, et al. Near-field acoustic holography using sparse regularization and compressive sampling principles [J]. Acoustical Society of America Journal, 2012, 132: 1521-1534. [14] WANG R, ZHANG C, and YU L, et al. Sparsity-enhanced equivalent source method for acoustic source reconstruction via the generalized minimax-concave penalty [J]. Mechanical Systems and Signal Processing, 2022, 167: 108508. [15] 徐滢,张小正,王帅,等. 三维自由空间中指向性信息未知偶极声源的等效源识别方法 [J/OL]. 振动工程学报, 2022:1-9. XU Ying,ZHANG Xiaozheng,WANG Shuai, et al. The equivalent source method for identifying dipoles with unknown directivity in three-dimensional free space [J/OL]. Journal of Vibration Engineering, 2022:1-9. [16] NING F, FENG P, and CHAO Z, et al. A highly efficient compressed sensing algorithm for acoustic imaging in low signal-to-noise ratio environments [J]. Mechanical Systems & Signal Processing, 2018, 112(NOV.):113-128. [17] FERNANDEZ-GRANDE E, XENAKI A, and GERSTOFT P. A sparse equivalent source method for near-field acoustic holography [J]. The Journal of the Acoustical Society of America, 2017, 141(1): 532- 542. [18] FERNANDEZ-GRANDE E and XENAKI A. The equivalent source method as a sparse signal reconstruction [A]. Proceedings of INTER-NOISE 2015-44th International Congress and Exposition on Noise Control Engineering [C]. 2015: 12-14. [19] HALD J. Fast wideband acoustical holography [J]. The Journal of the Acoustical Society of America, 2016, 139(4): 1508-1517. [20] PING G, CHU Z, and XU Z, et al. A refined wideband acoustical holography based on equivalent source method [J]. Scientific Reports, 2017, 7: 43458. [21] T Y SHI, Y F LIU, and BOLTON J S. Spatially sparse sound source localization in an under-determined system by using a hybrid compressive sensing method [J]. The Journal of the Acoustical Society of America 2019, 146: 1219-1229. [22] T Y SHI, BOLTON J S, and THOR W. Acoustic far-field prediction based on near-field measurements by using several different holography algorithms [J]. The Journal of the Acoustical Society of America, 2022, 151: 2171-2180. [23] BI C X, LIU Y, and XU L, et al. Sound field reconstruction using compressed modal equivalent point source method [J]. The Journal of the Acoustical Society of America, 2017, 141(1): 73-79. [24] HU D Y, LI H B, and HU Y, et al. Sound field reconstruction with sparse sampling and the equivalent source method [J]. Mechanical Systems and Signal Processing, 2018, 108: 317-325. [25] ZHANG Y, WANG Y J, XIANG Y, et al. A planar acoustic field reconstruction method based on fast wave superposition spectrum and sparse sampling [J]. Shock and Vibration, 2022, 2022: 1-12. [26] BI C X, LIU Y, and ZHANG Y B, et al. Extension of sound field separation technique based on the equivalent source method in a sparsity framework [J]. Journal of Sound and Vibration, 2019, 442: 125-137. [27] HE Y, CHEN L, and XU Z, et al. A compressed equivalent source method based on equivalent redundant dictionary for sound field reconstruction [J]. Applied Sciences, 2019, 9(4): 808. [28] HALD J. A comparison of compressive equivalent source methods for distributed sources [J]. The Journal of the Acoustical Society of America, 2020, 147(4): 2211-2221. [29] FERNANDEZ-GRANDE E and DAUDET L. Compressive acoustic holography with block-sparse regularization [J]. The Journal of the Acoustical Society of America, 2018, 143(6): 3737-3746. [30] BAI M R, CHUNG C, and LAN S S. Iterative algorithm for solving acoustic source characterization problems under block sparsity constraints [J]. The Journal of the Acoustical Society of America, 2018, 143(6): 3747-3757. [31] BI C X, ZHANG F M, and ZHANG X Z, et al. Sound field reconstruction using block sparse Bayesian learning equivalent source method [J]. The Journal of the Acoustical Society of America, 2022 151: 2378-2390. [32] GERSTOFT P, MECKLENBRAUKER F C, and XENAKI A, et al. Multisnapshot sparse Bayesian learning for DOA [J]. IEEE Signal Processing Letters, 2016,23(10): 1469-1473. [33] HU, D Y, LIU, X Y, and XIAO Y, et al. Fast sparse reconstruction of sound field via Bayesian compressive sensing [J]. Journal of Vibration and Acoustics, 2019, 141(4): 041017-1-9. [34] COTTER S F, RAO B D, and ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors [J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477-2488. [35] WIPF D P and RAO B D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3704-3716. [36] PARK M, PARK Y, and LEE K, et al. Incipient tip vortex cavitation localization using block-sparse compressive sensing [J]. The Journal of the Acoustical Society of America, 2020, 147(5): 3454-3464. [37] YANG Y, YANG Y X, and CHU Z, et al. Multi-frequency synchronous two-dimensional off-grid compressive beamforming [J]. Journal of Sound and Vibration, 2022, 517: 11.

PDF(2163 KB)

Accesses

Citation

Detail

段落导航
相关文章

/