用于航天器耦合微振动分析的修正动质量法

柴江帅,罗青

振动与冲击 ›› 2024, Vol. 43 ›› Issue (5) : 283-291.

PDF(2073 KB)
PDF(2073 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (5) : 283-291.
论文

用于航天器耦合微振动分析的修正动质量法

  • 柴江帅,罗青
作者信息 +

Modified dynamic mass method for coupled micro-vibration analysis of spacecraft

  • CHAI Jiangshuai,LUO Qing
Author information +
文章历史 +

摘要

针对航天器的微振动耦合问题,本文分别通过动力学平衡方程、动质量法和机械阻抗理论推导建立了微振动源与支撑结构的耦合传递模型,并对比分析了传统动质量法的适用范围。研究表明传统动质量法会对低频范围内耦合特性分析带来较大误差,且适用于微振动源质量远小于支撑结构的情况。在此基础上,提出了基于机械阻抗理论的修正动质量理论方法,并据此建立了反作用飞轮与航天器平台结构的耦合动力学模型,重点给出了采用修正动质量法对陀螺效应的处理方式。利用所建模型,仿真分析了反作用飞轮微振动对航天器平台结构动态影响,以及陀螺效应对系统动态特性的影响规律。本文所提出的修正动质量法可为航天器耦合微振动分析及地面微振动测试的开展提供理论参考。

Abstract

This paper addresses the analytical methods of coupled micro-vibrations of spacecraft. Coupled models of micro-vibration source and supporting structure are derived through dynamic equilibrium relationship, Dynamic Mass Method (DMM), and mechanical impedance theory, respectively. The application range of the traditional DMM is discussed and analyzed. The results indicate that traditional DMM may lead to significant discrepancy in the relatively lower frequency range during coupled micro-vibration analysis, and it is only suitable for cases that when the micro-vibration source’s mass is much smaller than that of the supporting structure. Therefore, a modified DMM is proposed based on mechanical impedance theory. Using the modified DMM, a coupled dynamic model consists of the reaction wheel and spacecraft is developed, with a particular focus on the treatment of gyroscopic effects. Then, coupled dynamics of the reaction wheel and spacecraft structure are analyzed and impact of gyroscopic effects are investigated. The proposed modified DMM can provide an analytical tool for both coupled micro-vibration analysis of spacecraft and ground tests.

关键词

航天器微振动 / 动力学耦合 / 修正动质量法 / 机械阻抗 / 陀螺效应

Key words

spacecraft micro-vibration / coupled dynamics / modified dynamic mass method / mechanical impedance / gyroscopic effects

引用本文

导出引用
柴江帅,罗青. 用于航天器耦合微振动分析的修正动质量法[J]. 振动与冲击, 2024, 43(5): 283-291
CHAI Jiangshuai,LUO Qing. Modified dynamic mass method for coupled micro-vibration analysis of spacecraft[J]. Journal of Vibration and Shock, 2024, 43(5): 283-291

参考文献

[1] 董瑶海. 航天器微振动:理论与实践[M]. 中国宇航出版社, 2015. [2] CALVI A, AGLIETTI G, ALBUS J, et al. ECSS-E-HB-32-26A Spacecraft Mechanical Loads Analysis Handbook[J]. 2013. [3] 李雄飞, 程伟. 基于频域子结构法的动量轮弹性边界微振动研究[J]. 振动与冲击, 2019, 38(3): 156-63. LI Xiongfei, CHENG Wei. Micro-vibration of RWA-flexible interface coupled system based on frequency domain substructure method[J]. Journal of Vibration and Shock, 2019, 38(3): 156-63. [4] 余松, 黄可凡, 蒋建平. 飞轮微振动的准零刚度多向隔振方法[J]. 振动与冲击, 2022, 41(2): 123-9. YU Song, HUANG Kefan, JIANG Jianping. Quai-zero-stiffness multi-direction isolation method for the micro-vibration isolation of flywheels[J]. Journal of Vibration and Shock, 2022, 41(2): 123-9. [5] 王嘉登, 张高雄, 茅敏, 等. 卫星控制力矩陀螺微振动抑制装置的动力学建模与实验研究[J]. 振动与冲击, 2021, 40(1): 1-7. WANG Jiadeng, ZHANG Gaoxiong, MAO Min, et al. Dynamic modeling and tests of a micro-vibration suppression device for satellite control moment gyroscope[J]. Journal of Vibration and Shock, 2021, 40(1): 1-7. [6] 夏明一. 空间微振动多维扰动力测试技术研究[D]; 中国科学院大学, 2019. XAI Mingyi. Research on multi-dimensional disturbance dynamic testing technology[D]. University of Chinese Academy of Sciences, 2019 [7] 王光远, 周东强, 赵煜. 遥感卫星在轨微振动测量数据分析[J]. 宇航学报, 2015, 36(003): 261-7. WANG Guangyuan, ZHOU Dongqiang, ZHAO Yu. Data Analysis of Micro-Vibration On-Orbit Measurement for Remote Sensing Satellite[J]. Journal of Astronautics, 2015, 36(003): 261-7. [8] 刘国青, 罗文波, 高行素, 等. 微振动源与支撑结构耦合特性研究综述[J]. 航天器环境工程, 2016, 33(2): 8. LIU Guoqing, LUO Wenbo, GAO Xingsu, et al. The coupling characteristics between microvibration source and supporting structure[J]. Spacecraft Environment Engineering, 2016, 33(2): 8. [9] MASTERSON, REBECCA A. Development and validation of empirical and analytical reaction wheel disturbance models[J]. Massachusetts Institute of Technology, 1999. [10] ELIAS L, MILLER D. A Coupled Disturbance Analysis Method Using Dynamic Mass Measurement Techniques[M]. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. [11] ELIAS L M. A structurally coupled disturbance analysis method using dynamic mass measurement techniques, with application to spacecraft-reaction wheel systems[J]. Massachusetts Institute of Technology, 2001. [12] ELIAS L M, DEKENS F G, BASDOGAN I, et al. Methodology for modeling the mechanical interaction between a reaction wheel and a flexible structure[C]. Proceedings of the International Society for Optics and Photonics, F, 2003. [13] BASDOGAN I, ELIAS L M, DEKENS F, et al. Predicting the Optical Performance of the Space Interferometry Mission Using a Modeling, Testing, and Validation Methodology[J]. Journal of Vibration & Acoustics, 2007, 129(2): 148-57. [14] ZHANG Z, S. AGLIETTI G, REN W. Coupled microvibration analysis of a reaction wheel assembly including gyroscopic effects in its accelerance[J]. Journal of Sound and Vibration, 2013, 332(22): 5748-65. [15] ADDARI D, AGLIETTI G S, REMEDIA M. Experimental and numerical investigation of coupled microvibration dynamics for satellite reaction wheels[J]. Journal of Sound and Vibration, 2017, 386: 225-41. [16] ADDARI D, AGLIETTI G S, REMEDIA M. Dynamic Mass of a Reaction Wheel Including Gyroscopic Effects: An Experimental Approach[J]. AIAA Journal, 2017, 55(1): 274-85. [17] 张鹏飞, 程伟, 赵煜. 考虑耦合效应的动量轮扰动测量[J]. 北京航空航天大学学报, 2011, 37(8): 5. ZHANG Pengfei, CHANG Wei, ZHAO Yu. Measure of reaction wheels disturbance considering coupling effect[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(8): 5. [18] 赵煜, 张鹏飞, 程伟. 反作用轮扰动特性测量及研究[J]. 实验力学, 2009, (6): 7. ZHAO Yu, ZHANG Pengfei, CHENG Wei. Measurement and Study of Disturbance Characteristics of Reaction Wheel Assembly[J]. Journal of Experimental Mechanics, 2009, (6): 7. [19] 高行素, 罗文波, 刘国青, 等. 控制力矩陀螺柔性安装界面扰动力分析方法[J]. 航天器工程, 2015, 24(5): 8. GAO Xingsu, LUO Wenbo, LIU Guoqing, et al. Analysis Method for Coupled Disturbance at Flexible Interface of Control Moment Gyroscope[J]. Spacecraft Engineering, 2015, 24(5): 8. [20] 张恒, 李世其, 刘世平, 等. 一种影响空间相机成像的制冷机微振动分析方法[J]. 宇航学报, 2017, 38(11): 8. ZHANG Heng, LI Shiqi, et al. An Analysis Method of Effect of Cryocooler Microvibration on Space Camera Imaging[J]. Journal of Astronautics, 2017, 38(11): 8. [21] 罗青. 航天器飞轮系统微振动特性及隔振方法研究[D]; 国防科学技术大学, 2014. LUO Qing. Research on micro-vibration characteristics and isolation methods of spcecraft flywheel system[D]. National University of Defense Technology, 2014. [22] ZHOU W, LI D, LUO Q, et al. Analysis and testing of microvibrations produced by momentum wheel assemblies[J]. Chinese Journal of Aeronautics, 2012, 25: 640-9. [23] 孙洪雨, 张雷, 陈善搏, 等. 飞轮微振动的组合隔振装置设计及实验研究[J]. 宇航学报, 2020, 41(10): 7. SUN Hongyu, ZHANG Lei, CHEN Shanbo, et al. Design and Experimental Study of the Combined Vibration Isolation Device for Flywheel Micro-Vibration[J]. Journal of Astronautics, 2020, 41(10): 7. [24] 李德葆, 陆秋海. 工程振动试验分析[M]. 清华大学出版社, 2004. [25] PREDA V. Robust microvibration control and worst-case analysis for high pointing stability space missions[D]. 2017.

PDF(2073 KB)

Accesses

Citation

Detail

段落导航
相关文章

/