谐波激励下压气机叶片多模态耦合振动特性研究

李鑫1,陈官峰1,秦秀云1,程前1,潘容1,2,王春健1,张呈波3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (5) : 338-344.

PDF(1999 KB)
PDF(1999 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (5) : 338-344.
论文

谐波激励下压气机叶片多模态耦合振动特性研究

  • 李鑫1,陈官峰1,秦秀云1,程前1,潘容1,2,王春健1,张呈波3
作者信息 +

Multi-modal coupled vibration characteristics of compressor blade under harmonic excitation

  • LI Xin1,CHEN Guanfeng1,QIN Xiuyun1,CHENG Qian1,PAN Rong1,2,WANG Chunjian1,ZHANG Chengbo3
Author information +
文章历史 +

摘要

航空发动机压气机叶片在振动台上进行疲劳试验时,振动台的简谐激励信号经过多个工装的摩擦界面传输过程中出现高阶倍频谐波分量。当叶片固有频率与激振频率的高阶谐波分量的频率相近时,叶片在外部简谐激励下会发生多模态耦合振动的现象,利用该试验特征可模拟航空发动机压气机叶片工作时的多模态耦合振动。本文通过振动疲劳多模态标定试验和激振试验,获取了叶片耦合振动时位移和应变的振动特性。数值分析和试验结果表明:a)叶片发生失效的位置与耦合振动各阶模态叠加后的振动大应力位置一致;b)随着叶片固有频率与高阶谐波分量频率之间频差的增加,高阶模态的振动应力呈指数下降的趋势。

Abstract

During the fatigue test of compressor blades in an aviation engine on a vibration table, the high-order harmonic components appear when the harmonic excitation signal of the shaking table is transmitted through the friction interface of several tooling. When the natural frequency of the blade is close to the frequency of the high-order harmonic component of the excitation frequency, the blade will have multi-mode coupling vibration under external harmonic excitation which can be used to simulate the multi-order coupling vibration of aero-engine compressor blades. This article obtained the vibration characteristics of displacement and strain during blade coupled vibration through vibration fatigue multi-mode calibration tests and excitation tests. Numerical analysis and experimental results show that: a) the position of blade failure is consistent with the position of high stress after the superposition of coupled vibration modes; b) with the increase of frequency difference between blade natural frequency and higher-order harmonic component frequency, the vibration stress of higher-order modes decreases exponentially.

关键词

压气机叶片 / 耦合振动 / 多模态共振 / 模态叠加。

Key words

Compressor Blades / Coupled Vibration / Multi-mode Resonance / Mode Superposition.

引用本文

导出引用
李鑫1,陈官峰1,秦秀云1,程前1,潘容1,2,王春健1,张呈波3. 谐波激励下压气机叶片多模态耦合振动特性研究[J]. 振动与冲击, 2024, 43(5): 338-344
LI Xin1,CHEN Guanfeng1,QIN Xiuyun1,CHENG Qian1,PAN Rong1,2,WANG Chunjian1,ZHANG Chengbo3. Multi-modal coupled vibration characteristics of compressor blade under harmonic excitation[J]. Journal of Vibration and Shock, 2024, 43(5): 338-344

参考文献

[1] 宋兆泓.航空发动机典型故障分析[M].北京航空航天大学出版社,1993. SONG Zhao-hong. Analysis and Study on Typical Vibration Faults of Aeroengine[M]. Beijing University of Aeronautics and Astronautics, 1993. [2] 万利,李舜酩,金业壮. 某型发动机压气机第1 级整流叶片疲劳试验研究[J]. 航空发动机,2008,34(3):15-18. WAN Li, LI Shun-ming, JIN Ye-zhuang. Fatogie Test of an Aeroengine compressor IGVs[J]. Aeroengine, 2008,34(3): 15-18. [3] 贾旭,胡绪腾,宋迎东.虑及高循环疲劳的裂纹型外物损伤叶片的可用极限[J].航空动力学报,2019,34(2):292-304. JIA Xu, HU Xuteng, SONG Yingdong. Serviceable limits of a crack type foreign object damaged blade considering high cycle fatigue[J]. Journal of Aerospace Power, 2019,34(2):292-304. [4] 胡家顺,冯新,周晶. 呼吸裂纹梁非线性动力特性研究[J]. 振动与冲击,2009,28(1):76~80. HU Jia-shun, FENG Xin, ZHOU Jing. Study on nonlinear dynamic response of a beam with a breathing crack. [J]. Journal of Vibration and Shock, 2009, 28(1): 76~80. [5] 蔡逢春,臧峰刚,梁艳仙. 含裂纹两端铰支输流管道在振荡流作用下的非线性特性研究[J]. 振动与冲击,2012,31(4):162~167. CAI Feng-chun, ZANG Feng-gang, LIANG Yan-xian. Nonlinear dynamic behaviors of a cracked hinged-hinged pipe conveying pulsating fluid[J]. Journal of Vibration and Shock, 2012,31(4):162~167. [6] 蔡逢春,张毅雄,齐欢欢等. 裂纹梁在简谐机理作用下的动力特性分析[J]. 四川大学学报, 2012,44(12):76~79. CAI Feng-chun, ZHANG Yi-xiong, QI Huan-huan, , et al. Analysis of Dynamic Behavior of Cracked Beams under Harmonic Force[J]. Journal of Sichuan University, 2012, 44(12):76~79. [7] 马晓峰,刘占生,侯宪科. 叶片冠间接触碰撞数值模拟及实验研究[J]. 振动与冲击,2010,29(3):34~38. MA Xiao-feng, LIU Zhan-sheng, HOU Xian-ke. Numerical simulation and experimental research on impact-contact between tips of blades[J]. Journal of Vibration and Shock, 2010,29(3):34~38. [8] 韩刚,陈予恕. 受转子位移激励的航空压气机呼吸裂纹叶片的联合共振[J]. 振动与冲击,2015, 34(18):87~93. HAN Gang, CHEN Yu-shu. Combination resonance of aero-engine compressor blade with a breathing crack under displacement excitation of rotor shaft[J]. Journal of Vibration and Shock, 2015, 34(18):87~93. [9] Johnson D R, Wang K W, Kim J S. Investigation of the threshold behavior of sub-harmonics for damage detection of a structure with a breathing crack[A]. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2010: 765032-765032-9. [10] 田少杰, 漆文凯, 许正华. 气流激励下叶片振动响应分析方法[J]. 航空动力学报,2021,36(4):836~838. TIAN Shao-jie, QI Wen-kai, XU Zheng-hua. Method of blade vibration response analysis under airflow excitation[J]. Journal of Aerospace Power, 2021, 36(4):836~838. [11] Jia R, Huang H, D W, et al. An efficient coupled-mode flutter analysis method for turbomachinery[J]. Aerospace Science and Technology, 2020, 106. [12] Ghasemloonia A, Rideout D G, Butt S D. Analysis of multi-mode nonlinear coupled axial-transverse drillstring vibration in vibration assisted rotary drilling[J]. Journal of Petroleum Science & Engineering, 2014, 116:36-49. [13] Hayat K, Lecea A D, Moriones C D, et al. Flutter performance of bend–twist coupled large-scale wind turbine blades[J]. Journal of Sound & Vibration, 2016:149-162. [14] Chen Z S , Rhee S H . Instantaneous multi-mode identification and analysis of vortex-induced vibration via a mode decomposition method[J]. Applied Ocean Research, 2019, 93(3):101962. [15] Chen W, Zheng Z, Li M. Multi-mode vortex-induced vibration of slender cable experiencing shear flow[J]. Procedia Engineering, 2010, 4(1):145-152.

PDF(1999 KB)

Accesses

Citation

Detail

段落导航
相关文章

/