基于广义积分变换法海洋温差能大口径冷水管强迫振动分析

谭健1,张理2,王冲1,张玉龙3,张玉1,段梦兰1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (5) : 41-51.

PDF(3565 KB)
PDF(3565 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (5) : 41-51.
论文

基于广义积分变换法海洋温差能大口径冷水管强迫振动分析

  • 谭健1,张理2,王冲1,张玉龙3,张玉1,段梦兰1
作者信息 +

Forced vibration analysis of large-diameter cold water pipe with ocean temperature difference energy based on generalized integral transformation method

  • TAN Jian1,ZHANG Li2,WANG Chong1,ZHANG Yulong3,ZHANG Yu1,DUAN Menglan1
Author information +
文章历史 +

摘要

复杂多变的海洋工况将诱发大口径冷水管强迫振动,为探明均布载荷、线性变化的静水压力、集中载荷和周期载荷作用下冷水管振动响应机制。基于Euler-Bernoulli梁理论,建立了管道动力学控制方程,采用广义积分变换法,求解了系统强迫振动的解析解,并与同伦摄动法相对比,验证了该方法的高精度和有效性,分析了内流、粘弹性耗散系数、阻尼比和质量比对管道振动特性的影响。结果表明:当内流流速对应的振动频率与固有频率接近时,管道将出现动态失稳。增大粘弹性耗散系数、阻尼比和质量比对横向位移的抑制效果呈现依次递减的规律,改变激振位置和激振频率可显著改变管道横向位移。本文的研究成果可对冷水管的初期设计提供一定的指导作用。

Abstract

The intricate and ever-changing marine conditions give rise to the phenomenon of large-caliber cold water pipe forced vibration. This study aims to investigate the underlying mechanisms of cold-water pipe vibration response under uniformly distributed loads, linearly varying hydrostatic pressure, concentrated loads, and periodic loads. By employing the Euler-Bernoulli beam theory, a dynamic control equation for the pipeline is established. Leveraging the generalized integral transformation method, an analytical solution for the forced vibration of the system is obtained. A comparative analysis with the Differential Quadrature Method (DQM) and the Differential Transform Method (DTM) confirms the high accuracy and effectiveness of this approach. Furthermore, the influences of internal flow, viscoelastic dissipation coefficient, damping ratio, and mass ratio on the vibration characteristics of the pipeline are analyzed. The results indicate that flutter occurs when the vibration frequency corresponding to the internal flow velocity approaches the natural frequency of the pipeline. Increasing the viscoelastic dissipation coefficient, damping ratio, and mass ratio sequentially diminishes the inhibitory effect on lateral displacement. Significantly, altering the excitation position and frequency can induce notable changes in the lateral displacement of the pipeline. The findings of this research provide valuable guidance for the initial design of cold-water pipe.

关键词

海洋温差能 / 大口径冷水管 / 广义积分变换法 / 强迫振动 / 参数分析 / 振动特性

Key words

ocean thermal energy conversion / large-diameter cold-water pipe / generalized integral transform technique / forced vibration / parameter analysis / vibration characteristics

引用本文

导出引用
谭健1,张理2,王冲1,张玉龙3,张玉1,段梦兰1. 基于广义积分变换法海洋温差能大口径冷水管强迫振动分析[J]. 振动与冲击, 2024, 43(5): 41-51
TAN Jian1,ZHANG Li2,WANG Chong1,ZHANG Yulong3,ZHANG Yu1,DUAN Menglan1. Forced vibration analysis of large-diameter cold water pipe with ocean temperature difference energy based on generalized integral transformation method[J]. Journal of Vibration and Shock, 2024, 43(5): 41-51

参考文献

[1] 苏佳纯,曾恒一,肖钢,王建丰,姜家骏.海洋温差能发电技术研究现状及在我国的发展前景[J].中国海上油气,2012,24(04):84-98. Su JiaChun, Zeng HengYi, Xiao Gang, et al, Research status of ocean thermal energy conversion technology and its development prospect in China. China Offshore Oil and Gas, 2012,24(04):84-98. [2] 李伟,赵镇南,王迅,刘奕晴.海洋温差能发电技术的现状与前景[J].海洋工程,2004(02):105-108. LI Wei, ZHAO Zhennan, WANG Xun, et al. Current status and prospect of ocean thermal energy conversion [J]. The Ocean Engineering, 2004, 22(2): 105-108. [3] Makai ocean engineering. ocean thermal energy conversion [EB/OL]. https: ∥ www. makai. com / ocean-thermal-energy-conversion/. [4] 张理,谭健,张玉龙,徐进,黄世苗,段青峰,段梦兰.多边界条件下海洋温差能冷水管动力响应分析[J]. 振动与冲击,2023,42(12):59-68. ZHANG Li, TAN Jian, ZHANG Yulong, XU Jin, HUANG Shimiao, DUAN Qingfeng, DUAN Menglan. Dynamics response analysis of a cold-water pipe for ocean thermal energy conversion under different boundary conditions. Journal of Vibration and Shock, 2023, 42(12): 59-68. [5] Zhang W, Li Y, Wu X, et al. Review of the applied mechanical problems in ocean thermal energy Conversion [J]. Renewable and Sustainable Energy Reviews, 2018, 93: 231-244. [6] Nihous G C, Vega L A. Design of a 100 MW OTEC-hydrogen Plantship [J]. Marine Structures, 1993, 6(2-3): 207-221. [7] A. Miller, M. Ascari, OTEC advanced composite cold-water pipe: final technical report, 2011. https://www.osti.gov/biblio/1024183 (Accessed: 10 March 2019). [8] A. Miller, T. Rosario, M. Ascari, Selection and validation of a minimum-cost cold water pipe material, configuration, and fabrication method for ocean thermal energy conversion (OTEC) systems, SAMPE, Proceedings of SAMPE 2012, the Society for the Advancement of Material and Process Engineering, Maryland, 2012, pp. 1-28. [9] He W, Sun C, Ge S S. Top Tension Control of a Flexible Marine Riser by Using Integral-Barrier Lyapunov Function [J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(2): 497-505. [10] He X, He W, Liu Y, et al. Robust Adaptive Control of an Offshore Ocean Thermal Energy Conversion System [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(12): 5285-5295. [11] Adiputra R, Utsunomiya T. Stability based approach to design Cold-water pipe (CWP) for ocean thermal energy conversion (OTEC) [J]. Applied Ocean Research, 2019, 92: 101921. [12] Adiputra R, Utsunomiya T. Linear vs Non-linear analysis on self-induced vibration of OTEC cold water pipe due to internal Flow [J]. Applied Ocean Research, 2021, 110: 102610. [13] Kuiper G L, Metrikine A V. Dynamic stability of a submerged, free-hanging riser conveying Fluid [J]. Journal of Sound and Vibration, 2005, 280(3-5): 1051-1065. [14] Giacobbi D B, Rinaldi S, Semler C, et al. The dynamics of a cantilevered pipe aspirating fluid studied by experimental, numerical and analytical Methods [J]. Journal of Fluids and Structures, 2012, 30: 73-96. [15] Liang X, Zha X, Jiang X, et al. Semi-analytical solution for dynamic behavior of a fluid-conveying pipe with different boundary Conditions [J]. Ocean Engineering, 2018, 163: 183-190. [16] 黄灿,段俊生.线性分数阶强迫振动的稳态响应[J].应用数学与计算数学学报,2015,29(02):240-247. Huang Can, DUAN Junsheng. Steady-state responses of linear fractional forced vibration[J]. Communication on Applied Mathematics and Computation, 2015, 29(02): 240-247. [17] 王剑,张振果,任龙龙,华宏星.考虑质量偏心的阶梯梁-基础的强迫振动计算[J].振动与冲击,2017,36(22):118-124. Wang Jian, Zhang Zhenguo, Ren Longlong, et al. Forced vibration calculation of an eccentric stepped beam-foundation system[J]. Journal of Vibration and Shock, 2017, 36(22): 118-124. [18] 赵千里,孙志礼,柴小冬,于瀛.具有弹性支承输流管路的强迫振动分析[J].机械工程学报,2017,53(12):186-191. Zhao Qianli, Sun Zhili, Chai Xiaodong, et al. Forced vibration analysis of Fluid-conveying pipe with elastic supports[J]. Journal of Mechanical Engineering, 2017, 53(12): 186-191. [19] 赵千里,孙志礼,柴小冬,王健.输流弯管的面内强迫振动分析[J].应用基础与工程科学学报,2019,27(03):695-706. Zhao Qianli, Sun Zhili, Chai Xiaodong, et al. In-plane forced vibration analysis of curved pipe conveying fluid[J]. Journal of Basic Science and Engineering. 2019, 27(03): 695-706. [20] 孙志礼,于瀛,赵千里,柴小冬.两端支承式输流管路的强迫振动分析[J].东北大学学报(自然科学版),2018,39(02):221-225. Sun Zhili, Yu Ying, Zhao Qianli, et al. Forced vibration analysis of fluid conveying pipe with both end supported[J]. Journal of Northeastern University, 2018, 39(02): 221-225. [21] 范谨铭,常学平,陈美.旋转输流管中管结构强迫振动的格林函数解[J].振动与冲击,2022,41(13):17-25. Fan Jinming, Chang Xueping, Chen Mei. Green’s function solution to forced vibration of pipe-in-pipe structure in rotating flow pipe[J]. Journal of Vibration and Shock, 2022, 41(13): 17-25. [22] Tan X, Ding H, Chen L-Q. Nonlinear frequencies and forced responses of pipes conveying fluid via a coupled Timoshenko Model [J]. Journal of Sound and Vibration, 2019, 455: 241-255. [23] Ni Q, Zhang Z L, Wang L. Application of the differential transformation method to vibration analysis of pipes conveying Fluid [J]. Applied Mathematics and Computation, 2011, 217(16): 7028–7038. [24] 包日东,闻邦椿.微分求积法分析弹性支承输流管道的稳定性[J].东北大学学报(自然科学版),2007(07):1017-1020. Bao ridong, wen bangchun. Differential quadrature method to analyze stability of elastically-supported fluid conveying pipelines[J]. Journal of Northeastern University, 2007(07): 1017-1020. [25] Li S, Liu G, Kong W. Vibration analysis of pipes conveying fluid by transfer matrix Method [J]. Nuclear Engineering and Design, 2014, 266: 78-88. [26] 金基铎, 杨晓东, 邹光胜. 两端支承输流管道的稳定性和临界流速分析 [J]. 机械工程学报, 2006(11):131–136. JIN Jiduo, Yang Xiaodong, Zou Guangsheng. Stability and critical flow velocity of supported pipes conveying fluid[J]. Journal of Mechanical Engineering, 2006(11): 131-136. [27] Li X Y, Zhao X, Li Y H. Green’s functions of the forced vibration of Timoshenko beams with damping Effect [J]. Journal of Sound and Vibration, 2014, 333(6): 1781–1795. [28] An C, Su J. Dynamic response of clamped axially moving beams: Integral transform Solution [J]. Applied Mathematics and Computation, 2011, 218(2): 249-259. [29] An C, Su J. Dynamic response of axially moving Timoshenko beams: Integral transform Solution [J]. Applied Mathematics and Mechanics, 2014, 35(11): 1421-1436. [30] An C, Su J. Dynamic analysis of axially moving orthotropic plates: Integral transform Solution [J]. Applied Mathematics and Computation, 2014, 228: 489-507. [31] Matt C F T. Combined classical and generalized integral transform approaches for the analysis of the dynamic behavior of a damaged Structure [J]. Applied Mathematical Modelling, 2013, 37(18-19): 8431-8450. [32] Matt C F T. Simulation of the transverse vibrations of a cantilever beam with an eccentric tip mass in the axial direction using integral Transforms [J]. Applied Mathematical Modelling, 2013, 37(22): 9338-9354. [33] An C, Su J. Dynamic behavior of pipes conveying gas-liquid two-phase Flow [J]. Nuclear Engineering and Design, 2015, 292: 204-212. [34] Gu J, Ma T, Duan M. Effect of aspect ratio on the dynamic response of a Fluid-conveying pipe using the Timoshenko beam Model [J]. Ocean Engineering, 2016, 114: 185-191. [35] Li F, An C, Duan M, et al. Combined damping model for dynamics and stability of a pipe conveying Two-phase Flow [J]. Ocean Engineering, 2020, 195: 106683. [36] Paidoussis, M.P. Fluid-structure interactions. Volume 1. Slender structures and axial flow, 2014. [37] Kuiper, G. L., & Metrikine, A. V. Dynamic stability of a submerged, free-hanging riser conveying fluid. Journal of Sound and Vibration, 2005, 280(3–5), 1051-1065. [38] Lei Y, Murmu T, Adhikari S, et al. Dynamic characteristics of damped viscoelastic nonlocal Euler-Bernoulli Beams [J]. European Journal of Mechanics - A/Solids, 2013, 42: 125-136. [39] Xu M-R, Xu S-P, Guo H-Y. Determination of natural frequencies of fluid-conveying pipes using homotopy perturbation method [J]. Computers and Mathematics with Applications, 2010, 60(3): 520-527. [40] He Y, An C, Su J. Bending of orthotropic rectangular thin plates with two opposite edges Clamped [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 234(6): 1220-1230.

PDF(3565 KB)

188

Accesses

0

Citation

Detail

段落导航
相关文章

/