电液3-UPS/S并联稳定平台参数振动特性分析

袁晓明1,2,王维锜1,2,庞浩东1,2,张立杰1,2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (5) : 52-61.

PDF(5314 KB)
PDF(5314 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (5) : 52-61.
论文

电液3-UPS/S并联稳定平台参数振动特性分析

  • 袁晓明1,2,王维锜1,2,庞浩东1,2,张立杰1,2
作者信息 +

Parametric vibration characteristics analysis of electrohydraulic 3-UPS/S parallel stable platform

  • YUAN Xiaoming1,2,WANG Weiqi1,2,PANG Haodong1,2,ZHANG Lijie1,2
Author information +
文章历史 +

摘要

针对电液3-UPS/S并联稳定平台驱动液压缸的压力脉动所产生的参数振动,建立了稳定平台的参数振动方程并利用多尺度法求解了主共振响应与组合共振响应的一次近似解;分析了主共振与组合共振响应特性以及振动幅值在初始工作空间内的变化规律,最后采用四阶龙格库塔法与模态试验对参数振动模型进行验证,结果表明:数值解与理论解之间的最大误差为4.2%,固有频率理论值与试验值之间的最大误差为4.66%,可验证参数振动模型的正确性。

Abstract

Aiming at the parametric vibration caused by the pressure pulsation of the driving hydraulic cylinder of the electro-hydraulic 3-UPS/S parallel stabilization platform, the parametric vibration equation is established and the first order approximate solutions of the primary resonance response and the combined resonance response are solved by using the multiscale method. The response characteristics of primary resonance and combined resonance and the variation of vibration amplitude in the initial workspace are analyzed. Finally, the parametric vibration model is validated by using the Runge-Kutta method and modal tests. The results show that the maximum error between the numerical and theoretical solutions is 4.2%, and the maximum error between the theoretical and experimental values of natural frequencies is 4.66%, which can verify the correctness of the parametric vibration model.

关键词

电液3-UPS/S并联稳定平台 / 压力脉动 / 参数振动 / 多尺度法 / 振动特性

Key words

electro-hydraulic 3-UPS/S parallel stabilization platform / pressure pulsation / parametric vibration / multi-scale method / vibration characteristics

引用本文

导出引用
袁晓明1,2,王维锜1,2,庞浩东1,2,张立杰1,2. 电液3-UPS/S并联稳定平台参数振动特性分析[J]. 振动与冲击, 2024, 43(5): 52-61
YUAN Xiaoming1,2,WANG Weiqi1,2,PANG Haodong1,2,ZHANG Lijie1,2. Parametric vibration characteristics analysis of electrohydraulic 3-UPS/S parallel stable platform[J]. Journal of Vibration and Shock, 2024, 43(5): 52-61

参考文献

[1] WANG Yuanchao, YANG Yongming; KUANG Haipeng, et al. High performance both in low-speed tracking and large-angle swing scanning based on adaptive nonsingular fast terminal sliding mode control for a three-axis universal inertially stabilized platform[J]. Sensors, 2020, 20(20): 16-18. [2] ZHOU Xiangyang, YUAN Jia; LI Yong, An integral sliding mode controller based disturbances rejection compound scheme for inertially stabilized platform in aerial remote sensing[J]. Proceedings of the Institution of Mechanical Engineers, 2018, 5: 932-943. [3] Papanikolaou A, Zaraphonitis G. Computer-aided simulations of large amplitude roll motions of ships in waves and of dynamic stability. IOS Press, 1987, 34(399): 170-211. [4] ZHANG Mengyue, GUAN Yongliang, ZHAO Weiwei. Adaptive super-twisting sliding mode control for stabilization platform of laser seeker based on extended state observer. Optik, 2019, 12(33): 199-201. [5] HILKERT J M. Inertially stabilized platform technology concepts and principles[J]. IEEE Control Systems Magazine, 2008, 28(1): 26-46. [6] WANG Liling, ZHUANG Xiaojin, WANG Honrui. Development of a parallel-series stabilized platform system[J]. Applied Mechanics and Materials, 2013, 319: 414-418. [7] DONG Fei, LEI Xusheng, CHOU Wusheng. A dynamic model and control method for a two-axis inertially stabilized platform[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 432-439. [8] Latifinavid M, Azizi A. Kinematic modelling and position control of a 3-DOF parallel stabilizing robot manipulator[J]. 2023, 107(2): 17. [9] MORINAGA A, OGAWA T, IWANAGA K, et al. Development of motion reduction device for ship using underactuated parallel link mechanism[J]. Sensors and materials: An International Journal on Sensor Technology, 2021, 33(3): 897-906. [10] LIU Wenji, DU Jialu, LI Jian, et al. Stabilization control of 3-DOF parallel vessel-borne platform with dynamic uncertainties and unknown disturbances[J]. Applied Ocean Research, 2022, 126(21): 1-11. [11] HUNEK W, MAJEWSKI P, ZYGARLICKI J, et al. A measurement-aided control system for stabilization of the real-life stewart platform[J]. Sensors, 2022, 22(19): 7271. [12] HONG Huajie, ZHOU Xiaoyao, ZHANG Zhiyong, et al. Modeling and calibration of pointing errors using a semi-parametric regression method with applications in inertially stabilized platforms[J]. New Astronomy, 2016, 47: 105-110. [13] WANG Dong, CAO Hongrui, YANG Yang, et al. Dynamic modeling and vibration analysis of cracked rotor-bearing system based on rigid body element method[J]. Mechanical Systems and Signal Processing, 2023, 191: 1-22. [14] 窦玉超, 侯荣伟, 邓云蛟, 等.3-RSR构型天线并联机构的结构设计与仿真分析[J]. 机械制造, 2019, 57(8): 43-47+62. DOU Yuchao, HOU Rongwei, DENG Yunjiao, et al. Structure design and simulation analysis of 3-RSR Configuration antenna parallel mechanism[J]. Mechanical Manufacturing, 2019, 57(8): 43-47+62. [15] JIAO Xiaolei, ZHAO Yang, MA Wenlai. Nonlinear dynamic characteristics of a micro-vibration fluid viscous damper[J]. Nonlinear Dynamics, 2018, 92(3): 1167-1184 [16] Wang Jun, LIM, T C, LI Mengfei. Dynamics of a hypoid gear pair considering the effects of time-varying mesh parameters and backlash nonlinearity[J]. Journal of Sound and Vibration, 2007, 308(1): 302-329. [17] ZHU Yong, TANG Shengnan, WANG Chuan, et al, Bifurcation characteristic research on the load vertical vibration of a hydraulic automatic gauge control system[J]. Processes, 2019, 7(1): 1-14. [18] ZHU Yong, QIAN Peng, TANG Shengnan, et al, Amplitude-frequency characteristics analysis for vertical vibration of hydraulic AGC system under nonlinear action[J]. AIP Advances, 2019, 9(3): 1-9. [19] WANG Xu, BI Fengrong, DU Haiping. Reduction of low frequency vibration of truck driver and seating system through system parameter identification, sensitivity analysis and active control[J]. Mechanical Systems and Signal Processing, 2018, 105: 16-35. [20] ARMAND J, PESARESI L, SALLES L, et al. A modelling approach for the nonlinear dynamics of assembled structures undergoing fretting wear[J]. Proceedings of the Royal Society A-Mathematical, Physical and Engineering Sciences, 2019, 475(2223): 1-20. [21] 李敏, 曹乐, 沈颉. 基于多尺度法的船舶横摇运动特性分析[J]. 农业装备与车辆工程, 2021, 59(11): 6-11. LI Min, CAO Le, SHEN Jie. Analysis of ship rolling motion characteristics based on multi-scale method[J]. Agricultural Equipment & Vehicle Engineering, 2021, 59(11): 6-11. [22] 胡安康, 刘亚冲, 卢雨, 等. 基于多尺度法的船舶非线性横摇运动特性研究[J]. 中国造船, 2016, 57(2): 13-21. HU Ankang, LIU Yachong, LU Yu, et al. Study on nonlinear roll motion characteristics of ships based on multiscale method[J]. Shipbuilding of China, 2016, 57(2): 13-21. [23] 吴雨, 蒋扇英. 多尺度法在时滞弹性关节机械臂非线性振动问题中的应用[J]. 力学季刊, 2018, 39(4): 778-784. WU Yu, JIANG Shanying. Application of multi-scale method in nonlinear vibration problem of time delay flexible joint manipulator[J]. Chinese Quarterly of Mechanics, 2018, 39(4): 778-784.

PDF(5314 KB)

Accesses

Citation

Detail

段落导航
相关文章

/