不确定性简谐激励下连续体结构可靠性拓扑优化

王选1,2,时元昆1,陈翔1,龙凯3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (6) : 11-18.

PDF(1165 KB)
PDF(1165 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (6) : 11-18.
论文

不确定性简谐激励下连续体结构可靠性拓扑优化

  • 王选1,2,时元昆1,陈翔1,龙凯3
作者信息 +

Reliability-based topology optimization of continuum structures under uncertain harmonic excitations

  • WANG Xuan1,2,SHI Yuankun1,CHEN Xiang1,LONG Kai2
Author information +
文章历史 +

摘要

针对不确定性简谐激励下连续体结构设计问题,提出了一种有效的考虑载荷振幅和频率不确定性的谐响应可靠性拓扑优化方法。建立了概率可靠性约束下结构体积比最小化的可靠性设计优化模型,其中极限状态函数定义为所关注自由度振幅平方和。利用伴随变量法推导了极限状态函数关于设计变量和随机变量的解析灵敏度列式,采用功能度量法(Performance Measure Approach, PMA)实现结构可靠性分析,并基于移动渐进线方法(method of moving asymptotes, MMA)实现设计变量的更新。最后,通过三个数值算例及蒙特卡罗仿真,验证了所提方法对不确定性简谐激励下连续体结构设计问题的有效性和稳定性,并讨论了简谐激励的振幅大小和频率不确定性、可靠度指标及变异系数对优化结果的影响。

Abstract

An effective reliability-based topology optimization method is proposed for the design problem of continuum structure considering the uncertainty of load amplitude and frequency of harmonic excitation. A reliability design optimization model of minimizing structural volume ratio under probabilistic reliability constraint is established, in which the limit state function is the sum of the amplitude squares of the degrees of freedom concerned. The analytic sensitivity formulations of limit state function with respect to design variables and random variables are derived using adjoint variable method. The Performance Measure Approach (PMA) is used to achieve reliability analysis, and the method of moving asymptotes (MMA) is used to update design variables. Finally, three numerical examples and Monte Carlo simulation are tested to verify the effectiveness and stability of the proposed method for the design problem of continuum structure under uncertain harmonic excitation. The influences of the uncertainty of amplitude and frequency of harmonic excitation, reliability index, and coefficient of variations on the optimization results are also discussed.

关键词

拓扑优化 / 简谐激励 / 不确定性 / 可靠性拓扑优化 / 谐响应分析.

Key words

Topology optimization / harmonic excitation / uncertainty / reliability-based topology optimization / harmonic response analysis

引用本文

导出引用
王选1,2,时元昆1,陈翔1,龙凯3. 不确定性简谐激励下连续体结构可靠性拓扑优化[J]. 振动与冲击, 2024, 43(6): 11-18
WANG Xuan1,2,SHI Yuankun1,CHEN Xiang1,LONG Kai2. Reliability-based topology optimization of continuum structures under uncertain harmonic excitations[J]. Journal of Vibration and Shock, 2024, 43(6): 11-18

参考文献

[1] Pedersen N L. Maximization of eigenvalues using topology optimization[J]. Structural and multidisciplinary optimization, 2000, 20: 2-11. [2] Du J, Olhoff N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps[J]. Structural and Multidisciplinary Optimization, 2007, 34(2): 91-110. [3] Silva O M, Neves M M, Lenzi A. A critical analysis of using the dynamic compliance as objective function in topology optimization of one-material structures considering steady-state forced vibration problems[J]. Journal of Sound and Vibration, 2019, 444: 1-20. [4] Li Q, Sigmund O, Jensen J S, et al. Reduced-order methods for dynamic problems in topology optimization: A comparative study[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 387: 114149. [5] Kang Z, He J, Shi L, et al. A method using successive iteration of analysis and design for large-scale topology optimization considering eigenfrequencies[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 362: 112847. [6] 付君健,张跃,杜义贤,等. 周期性多孔结构特征值拓扑优化[J]. 振动与冲击,2022, 41(3): 73-81. FU Jun-jian, ZHANG Yue, DU Yi-xian, et al. Eigenvalue topology optimization of periodic cellular structures [J]. Journal of Vibration and Shock, 2022, 41(3): 73-81. [7] Ma Z D, Kikuchi N, Cheng H C. Topological design for vibrating structures[J]. Computer methods in applied mechanics and engineering, 1995, 121(1-4): 259-280 [8] 龙凯,左正兴. 谐响应下的连续体拓扑优化[J]. 中国机械工程,2007,18(13):1556-1559. LONG Kai, ZUO Zheng-xing. Topological optimization of continuum structure subjected to harmonic excitation [J]. China Mechanical Engineering, 2007, 18(13): 1556-1559. [9] Liu H, Zhang W, Gao T. A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations[J]. Structural and Multidisciplinary Optimization, 2015, 51: 1321-1333. [10] 房占鹏,郑玲,唐重才. 指定频带简谐激励下约束阻尼结构拓扑优化[J]. 振动与冲击,2015,34(14):135-141. FANG Zhan-peng, ZHENG Ling, TANG Zhong-cai. Topology optimization for constrained layer damping structures under specified-band harmonic excitations [J]. Journal of Vibration and Shock, 2015, 34(14): 135-141. [11] Niu B, He X, Shan Y, et al. On objective functions of minimizing the vibration response of continuum structures subjected to external harmonic excitation[J]. Structural and Multidisciplinary Optimization, 2018, 57: 2291-2307. [12] Zhao X, Wu B, Li Z, et al. A method for topology optimization of structures under harmonic excitations[J]. Structural and Multidisciplinary Optimization, 2018, 58: 475-487. [13] 徐家琪,马永其. 动力学自然单元法的谐波激励下的连续体结构拓扑优化[J]. 振动与冲击,2019,38(21):252-258. XU Jia-qi,MA Yong-qi. Topology optimization of continuum structures under frequency excitation load based on dynamic natural element method. [J]. Journal of Vibration and Shock, 2019, 38(21): 252-258. [14] Long K, Wang X, Liu H. Stress-constrained topology optimization of continuum structures subjected to harmonic force excitation using sequential quadratic programming[J]. Structural and Multidisciplinary Optimization, 2019, 59: 1747-1759. [15] Montero D S, Silva O M, Cardoso E L. Topology optimization for harmonic vibration problems using a density-weighted norm objective function[J]. Structural and Multidisciplinary Optimization, 2020, 62: 3301-3327. [16] Zhao J, Yoon H, Youn B D. An adaptive hybrid expansion method (ahem) for efficient structural topology optimization under harmonic excitation[J]. Structural and Multidisciplinary Optimization, 2020, 61: 895-921. [17] Wang Y L, Zhu J H, Li Y, et al. Shape preserving design with topology optimization for structures under harmonic resonance responses[J]. Structural and Multidisciplinary Optimization, 2022, 65(5): 145. [18] Wang B, You H, Ma X, et al. Multigrid reduced-order topology optimization scheme for structures subjected to stationary random excitations[J]. Structural and Multidisciplinary Optimization, 2023, 66(5): 102. [19] Zargham S, Ward T A, Ramli R, et al. Topology optimization: a review for structural designs under vibration problems[J]. Structural and Multidisciplinary Optimization, 2016, 53: 1157-1177. [20] Dunning P D, Kim H A. Robust topology optimization: minimization of expected and variance of compliance[J]. AIAA journal, 2013, 51(11): 2656-2664. [21] Kharmanda G, Olhoff N, Mohamed A, et al. Reliability-based topology optimization[J]. Structural and Multidisciplinary optimization, 2004, 26: 295-307. [22] Yang B, Cheng C, Wang X, et al. Robust reliability-based topology optimization for stress-constrained continuum structures using polynomial chaos expansion[J]. Structural and Multidisciplinary Optimization, 2023, 66(4): 1-17. [23] Zhang X, Kang Z, Zhang W. Robust topology optimization for dynamic compliance minimization under uncertain harmonic excitations with inhomogeneous eigenvalue analysis[J]. Structural and Multidisciplinary Optimization, 2016, 54: 1469-1484. [24] 王栋.载荷作用位置不确定条件下结构动态稳健性拓扑优化设计[J]. 力学学报,2021,53(05):1439-1448. WANG Dong. Robust dynamic topology optimization of continuum structure subjected to harmonic excitation of loading position uncertainty[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(05): 1439-1448. [25] Valentini F, Silva O M, Cardoso E L. Robust topology optimization for harmonic displacement minimization of structures subjected to uncertainty in the excitation frequency[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 379: 113767. [26] Tu J, Choi K K, Park Y H. A new study on reliability-based design optimization[J]. Journal of Mechanical Design. 1999: 121 (4): 557–564. [27] Cheng C, Yang B, Wang X, et al. Reliability-based topology optimization using the response surface method for stress-constrained problems considering load uncertainty[J]. Engineering Optimization, 2022: 1-17. [28] Hasofer A M, Lind N C. Exact and invariant second-moment code format[J]. Journal of the Engineering Mechanics division, 1974, 100(1): 111-121. [29] Wang X, Meng Z, Yang B, et al. Reliability-based design optimization of material orientation and structural topology of fiber-reinforced composite structures under load uncertainty[J]. Composite Structures, 2022, 291: 115537. [30] Sigmund O, Petersson J. Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima[J]. Structural optimization, 1998, 16: 68-75. [31] Svanberg K. The method of moving asymptotes—a new method for structural optimization[J]. International journal for numerical methods in engineering, 1987, 24(2): 359-373.

PDF(1165 KB)

592

Accesses

0

Citation

Detail

段落导航
相关文章

/