高烈度震区大跨径中承式钢箱系杆拱桥减隔震技术研究

孙建鹏1,2,李进斌1,徐伟超1,王毅3,于超2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (6) : 141-150.

PDF(4122 KB)
PDF(4122 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (6) : 141-150.
论文

高烈度震区大跨径中承式钢箱系杆拱桥减隔震技术研究

  • 孙建鹏1,2,李进斌1,徐伟超1,王毅3,于超2
作者信息 +

Analysis and optimization of seismic mitigation and isolation effects for long span steel box tied arch bridges in high intensity seismic regions

  • SUN Jianpeng1,2,LI Jinbin1,XU Weichao1,WANG Yi3,YU Chao2
Author information +
文章历史 +

摘要

为了研究高强度地震作用下大跨径中承式钢箱系杆拱桥地震响应及减隔震技术,以西双版纳黎明大桥为工程背景,选取类似场地的实际地震动记录作为输入地震波,采用非线性时程分析法,研究支座类型及参数变化对拱桥结构的减隔震效果。结果表明:相比于普通支座,减隔震支座能大幅降低结构内力,但纵向位移有所增加,且摩擦摆支座的减隔震效果要强于铅芯橡胶支座;摩擦摆支座+粘滞阻尼器联合抗震体系能够有效降低纵向和横向位移,进一步能提升桥梁的抗震性能;对联合抗震体系进行参数敏感性分析可知,最佳的参数范围是:摩擦系数为0.04,曲率半径在3200~4200mm之间,阻尼系数为6000,阻尼指数在0.2~0.4之间;在最优抗震体系下,结构位移和内力均显著降低,最大减震率分别达到了75.3%和82.3%,表明该体系大幅提高了拱桥抵抗地震的能力,为同类桥梁减隔震设计提供参考。

Abstract

In order to study the seismic response and seismic isolation technology of long-span half-through steel box tied arch bridge under high-intensity earthquake, taking Xishuangbanna Liming Bridge as the engineering background, the actual ground motion records of similar sites were selected as input seismic waves, and the nonlinear time history analysis method was used to study the seismic isolation effect of bearing type and parameter change on arch bridge structure. The results show that compared with the ordinary bearing, the seismic isolation bearing can greatly reduce the internal force of the structure, but the longitudinal displacement increases, and the seismic isolation effect of the friction pendulum bearing is stronger than that of the lead rubber bearing. The combined seismic system of friction pendulum bearing and viscous damper can effectively reduce the longitudinal and transverse displacement, and further improve the seismic performance of the bridge. The parameter sensitivity analysis of the combined seismic system shows that the optimal parameter range is : the friction coefficient is 0.04, the radius of curvature is between 3200 mm and 4200 mm, the damping coefficient is 6000, and the damping index is between 0.2 and 0.4.Under the optimal seismic system, the structural displacement and internal force are significantly reduced, and the maximum seismic reduction rates are 75.3 % and 82.3 %, respectively, indicating that the system greatly enhances the ability of the arch bridge to resist dangerous earthquakes, which will undoubtedly provide a case for the seismic isolation design of similar bridges at the seismic design level.

关键词

高烈度 / 大跨径中承式钢箱系杆拱桥 / 有限元 / 地震响应 / 减隔震技术 / 摩擦摆支座 / 粘滞阻尼器

Key words

high intensity / long-span half-through steel box tied arch bridge / finite element / seismic response / seismic isolation technology / friction pendulum bearing / viscous damper

引用本文

导出引用
孙建鹏1,2,李进斌1,徐伟超1,王毅3,于超2. 高烈度震区大跨径中承式钢箱系杆拱桥减隔震技术研究[J]. 振动与冲击, 2024, 43(6): 141-150
SUN Jianpeng1,2,LI Jinbin1,XU Weichao1,WANG Yi3,YU Chao2. Analysis and optimization of seismic mitigation and isolation effects for long span steel box tied arch bridges in high intensity seismic regions[J]. Journal of Vibration and Shock, 2024, 43(6): 141-150

参考文献

[1] 周颖, 吴浩, 顾安琪. 地震工程: 从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(06): 1-12. Zhou Ying, Wu Hao, Gu Anqi Earthquake engineering: from earthquake resistance, isolation and reduction to recoverability [J] Engineering Mechanics, 2019, 36(06): 1-12 [2] 李红旭, 黄勇, 郭恩栋. 从第17届世界地震工程大会看桥梁抗震研究的近期进展[J]. 地震工程与工程动, 2022, 42(05): 26-38. Li Hongxu, Huang Yong, Guo Endong. Recent progress in bridge seismic research from the 17th World Earthquake Engineering Congress[J]. Earthquake Engineering and Engineering Movement, 2022, 42(05): 26-38. [3] Liang C Y, Chen A. A method for examining the seismic performance of steel arch deck bridges[J]. Frontiers of Architecture & Civil Engineering in China, 2010, 4(3): 311-320. [4] Álvarez J J, Aparicio A C, Jara J M, et al. Seismic assessment of a long-span arch bridge considering the variation in axial forces induced by earthquakes[J]. Engineering Structures, 2012, 34: 69-80. [5] Wang Y, Zhang Y. Analysis of Structural Antiseismic Performance, Wind Resistance and Stability for a Three-span Continuous Steel Arch Bridge[J]. Modern Transportation Technology, 2013, 10(02): 36-39. [6] Wang R, Xu L. Earthquake Response Analysis with Travelling-Wave for a Long-Span Steel Truss-Arch Railway Bridge[J]. Advances in structural engineering, 2013, 16(8): 1365-1370. [7] Zhanzhan T, Xu X, Tong W, et al. Study on FE models in elasto-plastic seismic performance evaluation of steel arch bridge[J]. Journal of Constructional Steel Research, 2015, 113. [8] 李兆祥. 上承式钢拱桥抗震性能研究[J]. 兰州工业学院学报, 2015, 22(04): 27-30. Li Zhaoxiang. Research on Seismic Performance of Deck Steel Arch Bridges[J]. Journal of Lanzhou Institute of Technology, 2015, 22(04): 27-30. [9] 夏修身, 戴胜勇, 刘尊稳. 大跨度拱桥抗震概念设计方法[J]. 地震工程与工程振动, 2017, 37(02): 90-96. Xia Xiushen, Dai Shengyong, Liu Zunwen. Seismic Conceptual Design Method for Long Span Arch Bridges[J]. Earthquake Engineering and Engineering Vibration, 2017, 37(02): 90-96. [10] Huang F, Fu C, Zhuang Y, et al. Experiment on seismic performance of concrete filled steel tubular arch-rib under multi-shaking-tables[J]. Thin-walled structures, 2017, 116: 212-224. [11] 唐利科. 大跨度提篮式钢箱拱桥动力特性及地震响应分析[D]. 成都: 西南交通大学, 2018. Tang Liko. Dynamic Characteristics and Seismic Response Analysis of Long Span Basket Steel Box Arch Bridge[D]. Chengdu: Southwest Jiaotong University, 2018. [12] Xu X, Hanqing Z, Zhanzhan T, et al. Damage characteristics of thin-walled steel arch bridges subjected to in-plane earthquake action[J]. Journal of Constructional Steel Research, 2018, 151: 70-82. [13] 罗红枝, 朱东生, 余佳玉. 肋拱桥地震反应特点分析[J]. 重庆交通大学学报(自然科学版), 2019, 38(06): 30-36. Luo Hongzhi, Zhu Dongsheng, Yu Jiayu. Analysis of seismic response characteristics of ribbed arch bridges[J]. Journal of Chongqing Jiaotong University(Natural Science Edition), 2019, 38(06): 30-36. [14] 赵唯坚, 刘欢, 王占飞等. 小矢跨比上承式钢提篮拱桥动力及稳定性分析[J]. 沈阳建筑大学学报(自然科学版), 2019, 35(02): 193-201. Zhao Weijian, Liu Huan, Wang Zhanfei, etc. Dynamic and Stability Analysis of Small Rise to Span Ratio Deck Steel Basket Arch Bridge[J]. Journal of Shenyang Jianzhu University (Natural Science Edition), 2019, 35(02): 193-201. [15] 张永亮, 王云, 陈兴冲等. 多维激励下大跨上承式铁路钢桁拱桥空间地震响应[J]. 中国铁道科学, 2020, 41(05): 56-63. Zhang Yongliang, Wang Yun, Chen Xingchong, etc. Spatial seismic response of large-span deck railway steel truss arch bridge under multi-dimensional excitation[J]. China Railway Science, 2020, 41 (05): 56-63. [16] Jacob M, Deepa B S. Modal analysis of an RCC long span arch bridge using midas Civil-A validation[J]. 2022, 54(2): 460-463. [17] 杨灿, 张铭, 张家元. 大跨度中承式钢箱桁架拱桥抗震体系研究[J]. 世界桥梁, 2022, 50(01): 86-92. Yang Can, Zhang Ming, Zhang Jiayuan. Research on Seismic System of Long Span Mid through Steel Box Truss Arch Bridge[J]. World Bridge, 2022, 50(01): 86-92. [18] Sun Jianpeng, Li Jinbin, Jiang Yingbiao, Ma Xiaogang, Tan Zihan, Zhufu Gaolin. Key Construction Technology and Monitoring of Long-Span Steel Box Tied Arch Bridge[J]. International Journal of Steel Structures, 2022, 23(1), 191 - 207. [19] 江辉, 宋光松, 刘展铄, 郭辉, 卢文良, 周勇政, 曾聪. 近断层地震下大跨度铁路钢桁架拱桥减震技术研究[J]. 振动与冲击, 2023, 42(04): 95-105. Jiang Hui, Song Guangsong, Liu Zhanshuo, Guo Hui, Lu Wenliang, Zhou Yongzheng, Zeng Cong. Research on seismic reduction technology for large-span railway steel truss arch bridges under near fault earthquakes[J]. Vibration and Shock, 2023, 42(04): 95-105. [20] 梁瑞军, 王浩, 郑文智等. 隔震曲线连续梁桥铅芯橡胶支座参数优化[J]. 工程力学, 2019, 36(11): 83-90. Liang Ruijun, Wang Hao, Zheng Wenzhi, etc. Parameter optimization of lead core rubber bearings for seismic isolation curve continuous beam bridges[J]. Engineering Mechanics, 2019, 36(11): 83-90. [21] XU J, LI Y F, LIU K P, et al. Seismic design of tied arch bridge in high earthquake region based on friction pendulum seismic isolation bearing[J]. IOP Conference Series: Earth and Environmental Science, 2021, 787(1): 1 - 7. [22] 张新中, 何宇森, 唐克东. 基于摩擦摆支座的城市高架桥梁隔震性能研究[J]. 工程抗震与加固改造, 2020,, 42(01) : 90-96. Zhang Xinzhong, He Yusen, Tang Kedong. Research on Seismic Isolation Performance of Urban Elevated Bridges Based on Friction Pendulum Bearings[J]. Engineering Earthquake Resistance and Reinforcement Renovation, 2020, 42(01): 90-96. [23] 郑成成, 陈永祁, 郑久建等. 高烈度区大跨度桥梁粘滞阻尼器减震研究[J]. 世界地震工程, 2021, 37(02): 115-122. Zheng Chengcheng, Chen Yongqi, Zheng Jiujian, etc. Research on seismic reduction of large-span bridges in high intensity areas using viscous dampers[J]. World Earthquake Engineering, 2021, 37(02): 115-122. [24] 易磊, 王冰, 易成等. 高烈度地震区铁路连续梁桥摩擦摆支座和黏滞阻尼器减隔震方案研究[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(06): 1173-1178. Yi Lei, Wang Bing, Yi Cheng, etc. Research on Seismic Reduction and Isolation Schemes for Railway Continuous Beam Bridges in High Intensity Seismic Regions with Friction Pendulum Bearings and Viscous Dampers[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition), 2021, 45(06): 1173-1178. [25] 管仲国, 李建中. 大跨度桥梁抗震体系研究[J]. 中国科学: 技术科学, 2021, 51(05): 493-504. Guan Zhongguo, Li Jianzhong. Research on Seismic System of Long Span Bridges[J]. Chinese Science: Technical Science, 2021, 51(05): 493-504. [26] 李小珍, 刘桢杰, 辛莉峰, 雷虎军. 考虑行波效应的刚架系杆拱桥减隔震分析[J]. 铁道工程学报, 2015, 32(03): 46-51. Li Xiaozhen, Liu Zhenjie, Xin Lifeng, Lei Hujun. Seismic reduction and isolation analysis of rigid frame tied arch bridges considering traveling wave effects[J]. Journal of Railway Engineering, 2015, 32(03): 46-51. [27] LI R, GE H B, MARUYAMA R, Assessment of post earthquake serviceability for steel arch bridges with seismic dampers considering mainshock-aftershock sequences[J]. Earthquakes and Structures, 2017, 13(2): 137 - 150.

PDF(4122 KB)

290

Accesses

0

Citation

Detail

段落导航
相关文章

/