带有拼缝阻尼器的自复位预制双肢剪力墙的耗能能力研究

鲁正1,2,汪晏1,严德裕1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (6) : 171-178.

PDF(2257 KB)
PDF(2257 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (6) : 171-178.
论文

带有拼缝阻尼器的自复位预制双肢剪力墙的耗能能力研究

  • 鲁正1,2,汪晏1,严德裕1
作者信息 +

Energy-dissipation capacity of a self-centering prefabricated coupled shear wall with open-close gap dampers

  • LU Zheng1,2,WANG Yan1,YAN Deyu1
Author information +
文章历史 +

摘要

为提升自复位预制双肢剪力墙的耗能能力,本文针对预制双肢剪力墙提出了一种拼缝阻尼器,该阻尼器可适应接缝附近的大变形,帮助结构同时实现自复位和耗能的性能。通过拟静力试验,获得了该阻尼器的滞回曲线,验证了所提阻尼器具备良好的耗能性能;使用Opensees把阻尼器放入预制双肢剪力墙中进行数值分析,发现所提阻尼器在不降低结构原本自复位性能的同时,大大提升了结构的耗能能力。同时,耗能主要由拼缝阻尼器承担,结构自身的耗能和损伤较小,有利于实现结构在震后的快速修复。

Abstract

To improve the energy consumption of self-centering prefabricated coupled shear wall, an open-close gap damper (OCGD) was proposed, which can adapt to large deformations near the joints and help the structure achieve both good self-centering and energy-dissipation ability. Static tests were used to obtain the hysteresis curve of the damper, which verified good energy dissipation abilities of the proposed damper. Through simulation by Opensees, it was found that the proposed damper greatly improved the energy consumption of the structure without reducing its original self-centering ability. In addition, the energy was mainly dissipated by the open-close gap dampers. The energy consumption and damage of the structure itself were small, which creates the possibility for quick repair after the earthquake.

关键词

自复位 / 耗能 / 预制双肢剪力墙 / Opensees / 可恢复功能结构 / 阻尼器

Key words

self-centering / energy-dissipation / prefabricated coupled shear wall / Opensees / earthquake resilient structures / damper

引用本文

导出引用
鲁正1,2,汪晏1,严德裕1. 带有拼缝阻尼器的自复位预制双肢剪力墙的耗能能力研究[J]. 振动与冲击, 2024, 43(6): 171-178
LU Zheng1,2,WANG Yan1,YAN Deyu1. Energy-dissipation capacity of a self-centering prefabricated coupled shear wall with open-close gap dampers[J]. Journal of Vibration and Shock, 2024, 43(6): 171-178

参考文献

[1] 周颖, 吴浩, 顾安琪. 地震工程:从抗震、减隔震到可恢复性[J]. 工程力学, 2019. 36(06): p. 1-12. ZHOU Ying, WU Hao, GU An-qi. Earthquake engineering: from earthquake resistance, energy dissipation, and isolation, to resistance[J]. Engineering Mechanics, 2019, 36(06): 1-12 [2] 吕西林, 陈云, 毛苑君. 结构抗震设计的新概念——可恢复功能结构[J]. 同济大学学报(自然科学版), 2011. 39(7): p. 941-948. LU Xilin, CHEN Yun, MAO Yuanjun. New Concept of Structural Seismic Design: Earthquake Resilient Structures[J]. Journal of Tongji University (Natural Science), 2011, 39(7): 941-948. [3] 毕仲君, 胡志强, 王琪等. 基于新型自复位摩擦耗能支撑的RC框架结构地震残余变形控制[J]. 振动与冲击, 2020, 39(15): 95-102. BI Zhongjun, HU Zhiqiang, Qi, et al. Seismic residual deformation control for RC frame structures based on a novel self-centering friction damping brace[J]. Journal of Vibration and Shock, 2020, 39(15): 95-102. [4] CHEN, Yun., LU, Xilin. New replaceable coupling beams for shear wall structures [C]// 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 2012. [5] 李国强, 张文津, 王彦博等. 双段消能摇摆结构体系的地震反应特性研究[J]. 振动与冲击, 2021, 40(05): 92-101. LI Guoqiang, ZHANG Wenjin, WANG Yanbo, et al. Seismic response characteristics of dual-stage energy dissipation rocking structure system[J]. Journal of Vibration and Shock, 2021, 40(05): 92-101. [6] LIU, Y., GUO, Z.X., LIU, X.J., et al. An innovative resilient rocking column with replaceable steel slit dampers: Experimental program on seismic performance[J]. Engineering Structures, 2019. 183: p. 830-840. [7] Christopoulos, C., Tremblay, R., Kim, H.J., et al. Self-centering energy dissipative bracing system for the seismic resistance of structures: Development and validation[J]. Journal of Structural Engineering, 2008. 134(1): p. 96-107. [8] WANG, C.L., QING, Y., WU, J., et al. Analytical and experimental studies on buckling-restrained brace with gap-supported tendon protection[J]. Journal of Constructional Steel Research, 2020. 164. [9] 徐龙河, 樊晓伟, 代长顺, 等. 预压弹簧自恢复耗能支撑受力性能分析与试验研究[J]. 建筑结构学报, 2016. 37(09): p. 142-148. XU Longhe, FAN Xiaowei, DAI Changshun, et al. Mechanical behavior analysis and experimental study on pre-pressed spring self-centering energy dissipation brace[J]. Journal of Building Structures, 2016, 37(09): 142-148. [10] XIE, Q., ZHOU, Z., Meng, S.P. Experimental investigation of the hysteretic performance of self-centering buckling-restrained braces with friction fuses[J]. Engineering Structures, 2020. 203. [11] 陈云, 陈超, 徐子凡. 具有自复位功能的金属耗能阻尼器抗震性能研究[J].振动与冲击, 2021, 40(23):25-31. CHEN Yun, CHEN Chao, XU Zifan. Aseismic performance of metal energy-dissipating damper with self-centering function[J]. Journal of Vibration and Shock, 2021, 40(23):25-31. [12] HUANG, H., ZHANG, F.T., ZHANG, W., et al. Numerical analysis of self-centering energy dissipation brace with arc steel plate for seismic resistance[J]. Soil Dynamics and Earthquake Engineering, 2019. 125. [13] LU, X., LV, Z.K., LV, Q.L. Self-centering viscoelastic diagonal brace for the outrigger of supertall buildings: Development and experiment investigation[J]. Structural Design of Tall and Special Buildings, 2020. 29(1). [14] 吕西林, 毛苑君. 带有可更换墙脚构件剪力墙的设计方法[J]. 结构工程师, 2012. 28(3): p. 12-17. LU Xilin, MAO Wanjun. Design Method for RC Shear Walls with Replaceable Foot Parts[J]. Structural Engineers, 2012, 28(3): 12-17 [15] 吕西林, 陈云, 蒋欢军. 带可更换连梁的双肢剪力墙抗震性能试验研究[J]. 同济大学学报(自然科学版), 2014. 42(02): p. 175-182. LU Xilin, CHEN Yun, JIANG Huanjun. Experimental Study of Seismic Performance of Coupled Shear Wall Structure with Replaceable Coupling Beams[J]. Journal of Tongji University (Natural Science), 2014. 42(02): p. 175-182. [16] 刘华, 预制预应力短肢剪力墙结构抗震能力试验研究[D]. 2007, 扬州大学. LIU Hua. Experimental research on seismic capacity of precast prestressed short pier shear wall structure[D]. 2007, Yangzhou University. [17] 鲁正,汪晏,李星华. 一种带有连梁阻尼器的预制双肢剪力墙[P]. 上海市:CN114541851A,2022-05-27. LU Zheng, WANG Yan, LI Xinghua. A prefabricated coupled shear wall with coupling beam damper[P]. Shanghai: CN114541851A, 2022-05-27 [18] Perez, F., Experimental and analytical lateral load response of unbonded post-tensioned precast concrete walls[D]. Lehigh University, 2004. [19] 黄远, 洪露露, 万雄伟, 等. 钢筋混凝土剪力墙塑性铰长度[J]. 地震工程与工程振动, 2019, 39(2): 79. HUANG Yuan, HONG Lulu, WAN Xiongwei, et al. Plastic hinge length of reinforced concrete shear wall[J]. Earthquake Engineering and Engineering Vibration, 2019, 39(2): 79 [20] 管东芝, 郭正兴, 尹航, 等. 部分高强筋装配式框架梁柱连接塑性铰长度研究[J]. 东南大学学报:自然科学版, 2019. 49(4): 7. GUAN Dongzhi, GUO Zhengxing, YIN Hang, et al. Study on plastic hinge length of precast beam-column connections reinforced partially with high-strength rebars[J]. Journal of Southeast University(Natural Science Edition), 2019, 49(4): 7

PDF(2257 KB)

Accesses

Citation

Detail

段落导航
相关文章

/