为深入了解顺向阵风来流对圆柱气动力和流场特性的影响,开展了雷诺数(Re)为1000的圆柱绕流三维大涡模拟,研究了不同频率顺向正弦来流对圆柱气动力和流场结构的影响规律,详细分析了升阻力系数、斯特劳哈数(St)、回流长度、分离角和尾流结构等参数的变化规律。顺向正弦来流速度为 ,其中来流频率f的变化范围为0 ~ 0.3Hz,U0为平均速度,A为竖向正弦来流的振幅,设为0.15 U0。研究结果表明:圆柱阻力系数卓越频率(即主导频率)与正弦来流频率基本一致,升力系数存在三个明显的频率峰值,分别对应涡脱频率与来流频率之差,涡脱频率,涡脱频率与来流频率之和。随着正弦来流频率f增大,St先减小后增大,在f = 0.25Hz时达到最小值,而回流长度先增大后减小,且在f = 0.15Hz时达到最大值。当f <= St时,分离角不变,而顺流向最小速度逐渐增大;当f > St时,分离角逐渐增大.
Abstract
To further understanding of the influence of streamwise gust inflow on the aerodynamic forces and flow around a circular cylinder, a 3D large eddy simulation (LES) of flow over a circular cylinder with Reynolds number (Re) of 1000 was carried out to investigate the influence of streamwise sinusoidal inflow with different frequencies on the aerodynamic forces and flow field. The lift and drag coefficients, Strouhal number (St), recirculation length, separation angle and wake structure were analyzed in detail. The velocity of streamwise sinusoidal inflow was set as , where the frequency of the inflow ranged from 0 to 0.3Hz,U0 the mean velocity,A the amplitude of the inflow, A = 0.15 U0. The results indicated that dominant frequency of the drag coefficient was substantially consistent with the frequency of the inflow. There were three obvious peak values of the frequency of the lift coefficient, which were the value of vortex shedding frequency minus inflow frequency, vortex shedding frequency, and the value of vortex shedding frequency add inflow frequency, respectively. The St is reduced first and then increased, with increase of the sinusoidal inflow frequency, and the minimum value can be obtained when f = 0.25Hz, while the recirculation length is increased first and then decreased, and the maximum value can be obtained when f = 0.15Hz. The separation angle was unchanged when f <= St, and the minimum streamwise velocity gradually increased; nevertheless, the separation angle gradually increased when f > St, and the minimum streamwise velocity gradually decreased.
关键词
圆柱绕流 /
大涡模拟 /
顺向正弦来流 /
气动力 /
流场
{{custom_keyword}} /
Key words
flow around a circular cylinder /
large eddy simulation /
streamwise sinusoidal inflow /
aerodynamic force /
flow field
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李震, 刘庆宽, 靖洪淼, 等. 护栏位置对流线型箱梁涡激振动的影响及作用机理[J]. 振动与冲击, 2023, 42(06): 1-7+15. LI Zhen, LIU Qingkuan, JING Hongmiao, et al. Effect on vortex induced vibration of the guardrails’ locations of a streamline box girder and the driving mechanism[J]. Journal of Fluids and structures, 2023, 42(06): 1-7+15. [2] 王仰雪, 刘庆宽, 靖洪淼. 倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究[J]. 振动与冲击, 2023, 42(6): 232-239. WANG Yangxue, LIU Qingkuan, JING Hongmiao, et al. Experimental study on the influence of inclined railings on the vortex-induced vibration performance of a streamlined box girder[J]. Journal of Fluids and structures, 2023, 42(6): 232-239. [3] LI H, LAIMAL S, JING H. Reynolds number effects on aerodynamic characteristics and vortex-induced vibration of a twin-box girder[J]. Journal of Fluids & Structures, 2014, 50:358-375. [4] GE Y, ZHAO L, CAO J. Case study of vortex-induced vibration and mitigation mechanism for a long-span suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 220:104866. [5] CAO S, LI M. Numerical study of flow over a circular cylinder in oscillatory flows with zero-mean and non-zero-mean velocities[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 144: 42-52. [6] 王丽, 王元, 王大伟. 正弦型来流条件下大气表面层特性的研究[J]. 实验流体力学, 2010, 024(002):15-18. WANG Li, WANG Yuan, WANG Dawei. Characters of sinusoidal atmospheric surface layer[J]. Journal of Experiments in Fluid Mechanics, 2010,024(002):15-18. [7] MA R, ZHOU Q, WANG P, et al. Effects of sinusoidal streamwise gust on the vortex-induced force on an oscillating 5: 1 rectangular cylinder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 213: 104642. [8] MA R, ZHOU Q, WANG P, et al. Numerical studies of unsteady flow field and aerodynamic forces on an oscillating 5: 1 rectangular cylinder in a sinusoidal streamwise flow[J]. Wind and Structures, 2022, 34(1): 91-100. [9] WU B, LI S, CAO S, et al. Numerical investigation of the separated and reattaching flow over a 5: 1 rectangular cylinder in streamwise sinusoidal flow[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 198: 104120. [10] 战庆亮, 周志勇, 葛耀君. Re=3900圆柱绕流的三维大涡模拟[J]. 哈尔滨工业大学学报, 2015, 47(12):75-79. ZHAN Qingliang, ZHOU Zhiyong, GE Yaojun. 3-Dimensional large eddy simulation of circular cylinder at Re = 3900[J]. JOURNAL OF HARBIN INSTITUTE OF TECHNOLOGY, 2015, 47(12):75-79. [11] LYSENKO D A, ERTESVÅG I S, RIAN K E. Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 3900 Using the OpenFOAM Toolbox[J]. Flow Turbulence & Combustion, 2012, 89(4):491-518. [12] 端木玉, 万德成. 雷诺数为3900时三维圆柱绕流的大涡模拟[J]. 海洋工程, 2016(06):15-24. DUAN Muyu, WAN Decheng. Large-eddy simulation of the flow past a cylinder with Re = 3900[J]. THE OCEAN ENGINEERING, 2016(06):15-24. [13] TAMURA T. Application of the interpolation method in generalized coordinate system to wake flows around a circular cylinder[J]. Journal of Structural Engineering, 2001, 545: 27-34. [14] CAO S, OZONO S, TAMURA Y, et al. Numerical simulation of Reynolds number effects on velocity shear flow around a circular cylinder[J]. Journal of Fluids and structures, 2010, 26(5): 685-702. [15] 谭潇玲, 涂佳黄, 雷平, 等. 剪切来流下串列三圆柱横向振动响应机理研究[J]. 振动与冲击, 2021, 40(20): 89-99. TAN Xiaoling, TU Jiahuang, LEI Ping, et al. The influence mechanism of crossflow vibration response of three tandem cylinders in shear flow[J]. Journal of Vibration and Shock, 2021, 40(20): 89-99. [16] 杜晓庆, 费陈杰, 况中华, 等. 展向剪切流作用下斜置圆柱气动特性研究[J]. 振动与冲击, 2014, 33(21): 31-37. DU Xiaoqing, FEI Chenjie, KUANG Zhonghua, et al. Aerodynamic characteristics of an inclined circular cylinder in a span-wise linear shear flow[J]. Journal of Vibration and Shock, 2014, 33(21): 31-37. [17] 周强, 曹曙阳, 王通, 等. 速度剪切流中圆柱体绕流特性的数值模拟[J]. 振动与冲击, 2012, 31(10): 118-122. ZHOU Qiang, CAO Shuyang, WANG Tong, et al. Numerical analysis of aerodynamic forces on circular cylinder in linear shear flow[J]. Journal of Vibration and Shock, 2012, 31(10): 118-122. [18] WANG P, ZHOU Q, ALAM M, et al. Effects of streamwise gust amplitude on the flow around and forces on two tandem circular cylinders[J]. Ocean Engineering, 2022, 261: 112040. [19] Zhang W, Samtaney R. Low-Re flow past an isolated cylinder with rounded corners[J]. Computers & Fluids, 2016, 136: 384-401. [20] Sohankar A. Flow over a bluff body from moderate to high Reynolds numbers using large eddy simulation[J]. Computers & Fluids, 2006, 35(10): 1154-1168. [21] 希缪, 斯坎伦. 风对结构的作用:风工程导论[M]. 同济大学出版社, 1992. SIMIU E, SCANLAN R H. Wind Effects on Structures: An Introduction to Wind Engineering and Wind Forces in Engineering[M]. Tongji University Press, 1992. [22] LI M, LI Q, SHI H. Aerodynamic pressures on a 5:1 rectangular cylinder in sinusoidal streamwise oscillatory flows with non-zero mean velocities[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 208: 104440.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}