弱约束条件下氢气含量对甲烷/空气燃爆特性的影响研究

张蓓蓓1,程扬帆1,2,夏煜2,钱家祺2,韦箫2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (6) : 255-261.

PDF(2310 KB)
PDF(2310 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (6) : 255-261.
论文

弱约束条件下氢气含量对甲烷/空气燃爆特性的影响研究

  • 张蓓蓓1,程扬帆1,2,夏煜2,钱家祺2,韦箫2
作者信息 +

Effects of hydrogen content on methane/air deflagration characteristics under a weak constraint condition

  • ZHANG Beibei1, CHENG Yangfan1,2, XIA Yu2, QIAN Jiaqi2, WEI Xiao2
Author information +
文章历史 +

摘要

本研究采用自制的可视化气体爆炸实验设备,以乳胶气球为反应容器模拟弱约束空间,研究不同氢气添加量对甲烷/空气预混气体的爆炸火焰温度场、爆炸压力以及火焰传播速度等特征参数;结合实验测试和Chemkin软件模拟结果,详细分析了氢气浓度对甲烷/空气爆炸特性的影响规律。结果表明:随着氢气含量的增加,混合气体燃爆火焰温度场内部温度变低,火焰边缘温度升高;混合气体的峰值超压和最大压力上升速率均逐渐增大;由于H、O和OH自由基的摩尔分数随着氢气的添加而增加,加速了火焰传播速度。同时,通过对混合气体的敏感性分析发现,甲烷的存在在一定程度上抑制了氢气的燃烧。研究结果可为弱约束空间内氢气/甲烷/空气预混气体的意外爆炸防控提供基础数据,也可为其他可燃气体爆炸特性的研究提供实验方法。

Abstract

In the study, a self-made visual gas explosion experimental equipment was used to simulate the weak constraint space with latex balloon as a reaction vessel. The characteristic parameters of explosion flame temperature field, explosion pressure and flame propagation velocity of methane/air premixed gas with different hydrogen addition were studied. Combined with the experimental test and Chemkin software simulation results, the effects of hydrogen concentration on the explosion characteristics of methane/air were analyzed in detail. The results showed that as the hydrogen content increased, the internal field of the mixed gas combustion flame became lower, and the temperature of flame edge increased. The peak overpressure and the maximum pressure rising rate of the premixed gas increased gradually. Since the mole fractions of H, O and OH radicals increased with hydrogen addition, the flame propagation velocity was accelerated. Meanwhile, through the sensitivity analysis of the mixed-gas, it was found that the combustion of hydrogen would be inhibited by the presence of methane inhibits to a certain extent.

关键词

弱约束 / 氢气 / 甲烷 / 气体爆炸 / 燃爆特性 / 比色测温

Key words

weak constraint / hydrogen / methane / gas explosion / deflagration characteristics / colorimetric thermometry

引用本文

导出引用
张蓓蓓1,程扬帆1,2,夏煜2,钱家祺2,韦箫2. 弱约束条件下氢气含量对甲烷/空气燃爆特性的影响研究[J]. 振动与冲击, 2024, 43(6): 255-261
ZHANG Beibei1, CHENG Yangfan1,2, XIA Yu2, QIAN Jiaqi2, WEI Xiao2. Effects of hydrogen content on methane/air deflagration characteristics under a weak constraint condition[J]. Journal of Vibration and Shock, 2024, 43(6): 255-261

参考文献

[1] Nagalingam B, Duebel F, Schmillen K. Performance study using natural gas, hydrogen-supplemented natural gas and hydrogen in AVL research engine[J]. International Journal of Hydrogen Energy, 1983, 8(9): 715-720. [2] Di Sarli V, Di Benedetto A. Effects of non-equidiffusion on unsteady propagation of hydrogen-enriched methane/air premixed flames[J]. International journal of hydrogen energy, 2013, 38(18): 7510-7518. [3] Shen X, Xiu G, Wu S. Experimental study on the explosion characteristics of methane/air mixtures with hydrogen addition[J]. Applied Thermal Engineering, 2017, 120: 741-747. [4] Fairweather M, Ormsby M P, Sheppard C G W, et al. Turbulent burning rates of methane and methane–hydrogen mixtures[J]. Combustion and Flame, 2009, 156(4): 780-790. [5] Yu M, Luan P, Zheng K, et al. Experimental study on explosion characteristics of syngas with different ignition positions and hydrogen fraction[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15553-15564. [6] Cao Y, Guo J, Hu K, et al. Effect of ignition location on external explosion in hydrogen–air explosion venting[J]. International Journal of Hydrogen Energy, 2017, 42(15): 10547-10554. [7] Hu E, Huang Z, He J, et al. Experimental and numerical study on laminar burning characteristics of premixed methane–hydrogen–air flames[J]. international journal of hydrogen energy, 2009, 34(11): 4876-4888. [8] Huang Z, Zhang Y, Zeng K, et al. Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures[J]. Combustion and flame, 2006, 146(1-2): 302-311. [9] Zhou Y, Li Y, Jiang H, et al. Experimental study on unconfined methane explosion: Explosion characteristics and overpressure prediction method[J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104377. [10] Kim W K, Mogi T, Dobashi R. Effect of propagation behaviour of expanding spherical flames on the blast wave generated during unconfined gas explosions[J]. Fuel, 2014, 128: 396-403. [11] Li M, Liu Z, Chen L, et al. Flame propagation characteristics and overpressure prediction of unconfined gas deflagration[J]. Fuel, 2021, 284: 119022. [12] Densmore J M, Homan B E, Biss M M, et al. High-speed two-camera imaging pyrometer for mapping fireball temperatures[J]. Applied Optics, 2011, 50(33): 6267-6271. [13] Chang P J, Mogi T, Dobashi R. An investigation on the dust explosion of micron and nano scale aluminium particles[J]. Journal of Loss Prevention in the Process Industries, 2021, 70: 104437. [14] Cheng Y F, Yao Y L, Wang Z H, et al. An improved two-colour pyrometer based method for measuring dynamic temperature mapping of hydrogen-air combustion[J]. International Journal of Hydrogen Energy, 2021, 46(69): 34463-34468. [15] 张启威, 程扬帆, 夏煜, 等. 比色测温技术在瞬态爆炸温度场测量中的应用研究[J]. 爆炸与冲击, 2022, 42(11): 105-117. ZHNG Qi-wei, CHENG Yang-fan, XIA Yu, et al. Application of colorimetric pyrometer in the measurement of transientexplosion temperature[J]. Explosion and Shock Waves, 2022, 42(11): 105-117. [16] 周永浩. 天然气爆炸火焰传播与超压耦合影响机制研究[D]. 大连理工大学, 2020. DOI:10.26991/d.cnki.gdllu.2020.000205. Zhou Y H. Investigations on the Coupled Influential Mechanism of the Flame Propagation and the Overpressure of Natural Gas Explosion[D]. Dalian University of Technology, 2020. DOI:10.26991/d.cnki.gdllu.2020.000205. [17] 夏煜, 程扬帆, 李世周, 等. 无约束条件下甲烷/空气预混气体燃爆特性研究[J]. 实验力学, 2023, 38(02): 243-253. XIA Yu, CHENG Yang-fan, LI Shi-zhou et al. Combustion and explosion characteristics of methane/air premixed gas under unconstrained condition[J]. Journal of Experimental Mechanics, 2023, 38(02): 243-253. [18] Leung T, Wierzba I. The effect of hydrogen addition on biogas non-premixed jet flame stability in a co-flowing air stream[J]. International journal of hydrogen energy, 2008, 33(14): 3856-3862. [19] GREGORY P, SMITH D G. GriMech3.0[EB/OL]. [2005/2007]. DOI: http://www.me.berkeley.edu/grimesh/version30/ text30. html. [20] Wang W T, Cheng Y F, Wang R, et al. Flame behaviors and overpressure characteristics of the unconfined acetylene-air deflagration[J]. Energy, 2022, 246: 123380. [21] 路长, 于子凯, 刘洋, 等. 氢气对预混甲烷/空气燃爆过程的影响[J]. 安全与环境学报, 2017, 17(06): 2240-2245. Lu Chang, YU Zi-kai, LIU Yang, et al. Impact of hydrogen addition on the premixed methane / air deflagration process[J]. Journal of Safety and Environment, 2017, 17(06): 2240-2245. [22] Li Y, Zhang X, Wang Y. Experimental study on the combustion characteristics of premixed methane-hydrogen-air mixtures in a spherical closed chamber[J]. Fuel, 2021, 299: 120885. [23] Law C K. Combustion Physics. Cambridge University Press[J]. New York, USA, 2006: 89-96. [24] Reyes M, Sastre R, Giménez B, et al. Experimental, kinetic modeling and morphologic study of the premixed combustion of hydrogen/methane mixtures[J]. Energies, 2022, 15(10): 3722.

PDF(2310 KB)

Accesses

Citation

Detail

段落导航
相关文章

/