地震动过程的时域降维建模

阮鑫鑫1,2,刘章军2,姜云木2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (6) : 311-319.

PDF(1190 KB)
PDF(1190 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (6) : 311-319.
论文

地震动过程的时域降维建模

  • 阮鑫鑫1,2,刘章军2,姜云木2
作者信息 +

Time-domain dimension-reduction modeling of ground motion processes

  • RUAN Xinxin1,2, LIU Zhangjun2, JIANG Yunmu2
Author information +
文章历史 +

摘要

地震动建模是工程结构随机地震反应和动力可靠度分析的基础。为此,提出了一类新的地震动过程的时域降维模型,并建议了模型中确定性参数的取值及随机参数的概率分布。首先,从平稳过程时域表达的基本理论出发,导出了平稳和非平稳地震动过程的时域表达形式,通过引入随机函数的降维思想,实现了地震动过程的时域降维表达。同时,基于实测强震记录,给出了地震动时域降维模型的参数识别方法,进而获得模型中基本参数的确定性取值或概率分布。最后,通过地震动过程的降维模拟分析,并与实测强震记录的反应谱和傅里叶幅值谱对比分析。结果表明,地震动过程的时域降维模型具有良好的精度、收敛性和工程适用性,生成的代表性地震动时程能够反映地震动的自然变异性。

Abstract

Modeling of ground motion is the basis of stochastic seismic response and dynamic reliability analysis of engineering structures. To this end, a new time-domain dimension-reduction model of ground motion process was proposed, and the values of deterministic parameters and the probability distribution of random parameters in the model were suggested. Firstly, based on the basic theory of time-domain representation of stationary process, time-domain representation forms of stationary and non-stationary ground motion processes were derived. By introducing the idea of dimension reduction of random functions, time-domain dimension-reduction representation of ground motion processes was realized. Meanwhile, based on the measured strong motion records, the parameter identification method of the time-domain dimension-reduction model of ground motion was given, and then the deterministic values or probability distributions of the basic parameters in the model were obtained. Finally, the dimension-reduction simulation analysis of the ground motion process was carried out and compared with the response spectrum and Fourier amplitude spectrum of the measured strong motion records. The results show that the time-domain dimension-reduction model of ground motion process has good accuracy, convergence and engineering applicability, and the representative ground motion time history generated can reflect the natural variability of ground motion.

关键词

非平稳地震动 / 时域表达 / 降维建模 / 参数识别 / 自然变异性

Key words

nonstationary ground motion / time-domain representation / dimension-reduction modeling / parameter identification / natural variability

引用本文

导出引用
阮鑫鑫1,2,刘章军2,姜云木2. 地震动过程的时域降维建模[J]. 振动与冲击, 2024, 43(6): 311-319
RUAN Xinxin1,2, LIU Zhangjun2, JIANG Yunmu2. Time-domain dimension-reduction modeling of ground motion processes[J]. Journal of Vibration and Shock, 2024, 43(6): 311-319

参考文献

[1] 杨庆山, 田玉基. 地震地面运动及其人工合成[M]. 北京: 科学出版社, 2014. YANG Qing-shan, TIAN Yu-ji. Earthquake ground motion & artificial generation [M]. Beijing: China Science Publishing & Media Ltd., 2014. [2] Shinozuka M, Deodatis G. Stochastic process models for earthquake ground motion [J]. Probabilistic Engineering Mechanics, 1988, 3(3): 114-123. [3] 赵风新, 胡聿贤. 地震动非平稳性与幅值谐和相位差谱的关系[J]. 地震工程与工程振动, 1994, 14(2): 1-6. ZHAO Feng-xin, HU Yu-xian. On the relationship of earthquake ground motion’s non-stationary with its amplitude spectrum and phase differences spectrum [J]. Earthquake Engineering and Engineering Vibration, 1994, 14(2): 1-6. [4] 张冬锋, 付长华, 吕红山, 等. 随机有限断层法及其工程应用中的问题分析[J]. 震灾防御技术, 2018, 13(4): 784-800. ZHANG Dong-feng, FU Chang-hua, LV Hong-shan, et al. Stochastic finite fault method and its engineering applications [J]. Technology for Earthquake Disaster Prevention, 2018, 13(4): 784-800. [5] 丁佳伟, 何浩祥, 闫晓宇. 地震动功率谱改进模型及其在人工地震动合成中的应用[J]. 振动与冲击, 2020, 39(21): 258-266. DING Jia-wei, HE Hao-xiang, YAN Xiao-yu. Improved model of seismic power spectrum and its application in artificial ground motion synthesis [J]. Journal of Vibration and Shock, 2020, 39(21): 258-266. [6] 林家浩, 张亚辉, 孙东科, 等. 受非均匀调制演变随机激励结构响应快速精确计算[J]. 计算力学学报, 1997, 14(1): 2-8. LIN Jiahao, ZHANG Yahui, SUN Dongke, et al. Fast and precise computation of structural responses to non-uniformly modulated evolutionary random excitations [J]. Chinese Journal of Computational Mechanics, 1997, 14(1): 2-8. [7] 胡灿阳, 陈清军. 非平稳地震动的双调制模型研究[J]. 力学季刊, 2008, 29(4): 530-536. HU Can-yang, CHEN Qing-jun. Research on bi-modulation model of non-stationary earthquake ground motion [J]. Chinese Quarterly of Mechanics, 2008, 29(4): 530-536. [8] 张郁山, 赵凤新. 基于小波函数的地震动反应谱拟合方法[J]. 土木工程学报, 2014, 47(01): 70-81. ZHANG Yu-shan, ZHAO Feng-xin. Matching method of ground-motion response spectrum based on the wavelet function [J], China Civil Engineering Journal, 2014, 47(01): 70-81. [9] 孔凡, 李杰. 周期广义谐和小波变换及重构[J]. 振动与冲击, 2013, 32(7): 24-29. KONG Fan, LI Jie. Periodic generalized harmonic wavelet: Transformation and reconstruction [J]. Journal of Vibration and Shock, 2013, 32(7): 24-29. [10] Wang L, McCullough M, Kareem A. Modeling and simulation of nonstationary processes utilizing wavelet and Hilbert transforms [J]. Journal of Engineering Mechanics, 2013,140(2): 345-360. [11] 胡灿阳, 陈清军, 祁冰, 等. 基于正交化HHT和随机相位模拟非平稳随机过程[J]. 振动与冲击, 2012, 31(14): 102-106. HU Can-yang, CHEN Qing-jun, QI Bing, et al. Simulation of nonstationary stochastic processes based on orthogonal Hilbert-Huang transform and random phase approach [J]. Journal of Vibration and Shock, 2012, 31(14): 102-106. [12] Rezaeian S, Der Kiureghian A. A stochastic ground motion model with separable temporal and spectral nonstationarities [J]. Earthquake Engineering & Structural Dynamics, 2008, 37: 1565-1584. [13] Amin M, Ang A. Non-stationary stochastic model of earthquake motion [J]. Journal of the Engineering Mechanics Division, 1968, 94(2): 559-584. [14] Liu Z J, Liu Z X, Chen D. Probability density evolution of a nonlinear concrete gravity dam subjected to nonstationary seismic ground motion [J]. Journal of Engineering Mechanics, 2018, 144: 04017157. [15] Liu Z J, Liu W, Peng Y B. Random function based spectral representation of stationary and non-stationary stochastic processes[J]. Probabilistic Engineering Mechanics, 2016, 45: 115-126. [16] 刘章军, 方兴. 平稳地震动过程的随机函数-谱表示模拟[J]. 振动与冲击, 2013, 32(24): 6-10+37. LIU Zhang-jun, FANG Xing. Simulation of stationary ground motion with random functions and spectral representation [J]. Journal of Vibration and Shock, 2013, 32(24): 6-10+37. [17] Vlachos C, Papakonstantinou K G, Deodatis G. A multi-modal analytical non-stationary spectral model for characterization and stochastic simulation of earthquake ground motions [J]. Soil Dynamics and Earthquake Engineering, 2016, 80: 177-191. [18] Li J, Chen J B. Stochastic Dynamics of Structures [M]. Singapore: John Wiley & Sons, 2009. [19] Spanos P D, Zeldin B A. Monte Carlo treatment of random fields: A broad perspective [J]. Applied Mechanics Reviews, 1998, 51(3):219-237. [20] 胡聿贤, 周锡元. 弹性体系在平稳和平稳化地面运动下的反应[M]. 中国科学院土木建筑研究所地震工程研究报告集(第1集). 北京: 科学出版社, 1962. HU Yu-xian, ZHOU Xiyuan. The response of the elastic system under the stationary and nonstationary ground motions [M]. Earthquake Engineering Research Report (No.1) by the Institute of Civil Engineering, Chinese Academy of Sciences. Beijing: Science Press, 1962. [21] 李英民, 刘立平. 工程结构的设计地震动[M]. 北京: 科学出版社, 2011. LI Ying-ming, LIU Li-ping. Design ground motion of engineering structures [M]. Beijing: China Science Publishing & Media Ltd., 2011. [22] Vanmarcke E H, Lai S S P. Strong-motion duration and RMS amplitude of earthquake records [J]. Bulletin of the Seismological Society of America, 1980, 70(4): 1293-1307. [23] Rezaeian S, Der Kiureghian A. Simulation of synthetic ground motions for specified earthquake and site characteristics [J]. Earthquake Engineering & Structural Dynamics, 2010, 39(10):1155-1180. [24] 郭锋, 吴东明, 许国富, 等. 中外抗震设计规范场地分类对应关系. 土木工程与管理学报, 2011, 28: 63-66. GUO Feng, WU Dong-ming, XU Guo-fu, et al. Site classification corresponding relationship between Chinese and the overseas seismic design codes [J]. Journal of Civil Engineering and Management, 2011, 28(2): 63-66. [25] GB 18306—2015 中国地震动参数区划图[S]. 北京: 中国标准出版社, 2015. GB 50011—2010 Seismic ground motion parameters zonation map of China [S]. Beijing: Standards Press of China, 2015. [26] Akaike H. A new look at the statistical model identification [M]. Berlin: Springer, 1974. [27] Ang, A H -S, Tang WH. Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering [M]. Hoboken: John Willey & Sons, 2007. [28] 徐军, 李哲帆, 张洋, 等. 平稳随机脉动风场模拟的高维概率空间选点法[J]. 华南理工大学学报(自然科学版), 2021, 49(10): 95-103. XU Jun, LI Zhe-fan, ZHANG Yang, et al. Points selection in high-dimensional random-variate space for simulating stationary stochastic wind field [J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(10): 95-103.

PDF(1190 KB)

620

Accesses

0

Citation

Detail

段落导航
相关文章

/