桥墩沉降下齿轨-超大坡度桥梁系统适应性及安全性研究

兆玮1,张梦琪1,王浪1,李世辉1,袁密奥1,陈志辉2,杨吉忠2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (6) : 93-103.

PDF(2818 KB)
PDF(2818 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (6) : 93-103.
论文

桥墩沉降下齿轨-超大坡度桥梁系统适应性及安全性研究

  • 兆玮1,张梦琪1,王浪1,李世辉1,袁密奥1,陈志辉2,杨吉忠2
作者信息 +

Adaptability and safety of a toothed rail-bridge system with extra large slope under pier settlement

  • CHEN Zhaowei1,ZHANG Mengqi1,WANG Lang1,LI Shihui1,YUAN Mi’ao1,CHEN Zhihui2,YANG Jizhong2
Author information +
文章历史 +

摘要

我国规划了多条含有超大坡度桥梁的齿轨铁路线路,随着服役时间增长,桥墩沉降问题难以避免,易造成齿轨结构局部应力过大,严重时还会导致连接螺栓断裂,威胁齿轨系统的安全性和稳定性。针对该问题,详细考虑齿轮-齿轨非线性啮合行为、轮轨非线性接触行为以及桥墩沉降等复杂因素,建立桥墩沉降下齿轨车辆-齿轨(轨道)-超大坡度桥梁系统耦合动力学模型,研究列车通过时桥墩沉降对齿轨垂/纵向变形、应力、加速度以及连接螺栓应力的影响,最终提出山区大坡度齿轨铁路桥墩沉降安全控制值。研究表明:在齿轮齿轨啮合作用和轮轨作用等多荷载综合作用下,桥墩沉降极有可能导致齿轨连接螺栓发生断裂;当桥墩沉降量达到6.76mm时,连接螺栓剪切应力达到其许用剪切强度235MPa,可能发生断裂,严重威胁结构稳定性和行车安全;齿轨结构应力远小于齿轨抗拉强度;齿轨最大变形量可达桥墩沉降量的140%;齿轨振动主频位于70~80Hz;桥墩沉降对连接螺栓应力和齿轨变形的影响较为显著,而对齿轨振动、应力的影响较小。

Abstract

China has planned a number of rack railway lines with super-large slope bridges. With the increase of service time, the problem of pier settlement is difficult to avoid, and it is easy to cause excessive local stress in the rack structure. In serious cases, it will also lead to the fracture of connecting bolts, threatening the safety and stability of the rack system. To solve this problem, taking into account the complex factors such as the nonlinear meshing behavior of the gear-track, the nonlinear contact behavior of the wheel-rail and the settlement of the bridge pier, the coupled dynamic model of the rack-rail vehicle-rack (track) - super-large slope bridge system under the settlement of the bridge pier is established. It study the vertical/longitudinal deformation and stress of the rack caused by the settlement of the bridge pier when the train passes. Based on the influence of the stress of connecting bolts and the vertical/longitudinal vibration acceleration of the rack at the mid-span of the bridge, the safety control value of the settlement of the pier of the mountain railway with large slope rack is finally proposed. The research shows that under the combined action of multiple loads such as gear rack meshing and wheel rail action, the settlement of bridge pier is likely to cause the fracture of gear rail connecting bolts; When the settlement of the pier reaches 6.76 mm, the shear stress of the connecting bolt reaches its allowable shear strength of 235 MPa. It may cause fracture, seriously threatening the structural stability and driving safety; The structural stress of the gear rail is far less than the tensile strength of the gear rail; The maximum deformation of the rack can reach 140% of the settlement of the pier; The main frequency of gear rail vibration is 70~80Hz; The influence of pier settlement on the stress of connecting bolts and the deformation of gear rail is relatively significant, while the influence on the vibration and stress of gear rail is relatively small.

关键词

车辆-轨道-桥梁相互作用 / 齿轨铁路 / 超大坡度桥梁 / 桥墩沉降 / 运行安全

Key words

Vehicle-track-bridge interaction / Toothed rail railway / Bridge with super large slope / Pier settlement / Operation safety

引用本文

导出引用
兆玮1,张梦琪1,王浪1,李世辉1,袁密奥1,陈志辉2,杨吉忠2. 桥墩沉降下齿轨-超大坡度桥梁系统适应性及安全性研究[J]. 振动与冲击, 2024, 43(6): 93-103
CHEN Zhaowei1,ZHANG Mengqi1,WANG Lang1,LI Shihui1,YUAN Mi’ao1,CHEN Zhihui2,YANG Jizhong2. Adaptability and safety of a toothed rail-bridge system with extra large slope under pier settlement[J]. Journal of Vibration and Shock, 2024, 43(6): 93-103

参考文献

[1] 李发福, 刘梦汝. 关于齿轨制式车辆的特点及应用于山地旅游项目工程化的要点[J]. 科学技术创新, 2019(18):15-16. LI Fafu, Liu Mengru The characteristics of gear rail vehicles and the key points for their application in the engineering of mountain tourism projects [J] Science and Technology Innovation, 2019 (18): 15-16. [2] 余浩伟,章玉伟,陈粒.齿轨铁路技术特点与应用展望研究[J]. 铁道工程学报, 2020, 37(10): 6-10. YU Haowei, Zhang Yuwei, Chen Li. Research on the Technical Characteristics and Application Prospects of Toothed Rail Railways [J] Journal of Railway Engineering, 2020, 37 (10): 6-10. [3] 孙旭,王平.高速铁路扣件失效对车辆-轨道耦合系统动态响应的影响[J].铁道学报,2022,44(08):108-116. SUN Xu, Wang Ping. Effect of Fastenings Failure on Dynamic Response of Vehicle-Track Coupling System in High-speed Railway [J]. Journal of the China Railway Society, 2022, 44(08): 108-116. [4] 陈双喜. 基于SIMPACK的一种山地齿轨车动力学分析[J].铁道机车车辆, 2022, 42(04): 74-79. CHEN Shuangxi Dynamic analysis of a mountain toothed rail vehicle based on SIMPACK [J]. Railway Rolling Stock, 2022, 42 (04): 74-79. [5] 牛悦丞,李芾,丁军君等.齿轨铁路发展及应用现状综述[J].铁道标准设计, 2019, 63(12): 37-43. DOI: 10.13238/ j.issn. 1004-2954. 201904170001. NIU Yuecheng, Li Fu, Ding Junjun, et al. Overview of the Development and Application Status of Toothed Rail Railways [J]. Railway Standard Design, 2019, 63(12): 37-43. DOI: 10.13238/ j.issn. 1004-2954. 201904170001. [6] SCHLUNEGGER H. Modern rackways[J]. ZEA Rail Glasers Annalen, 2002, 126(Suppl): 267-278. [7] 尚勤, 李廉枫, 涂旭. 国外齿轨铁路技术的发展及运用[J].机车电传动, 2019, No.267(02): 9-15. DOI: 10.13890/ j.issn. 1000-128x. 2019. 02. 002. SHANG Qin, Li Lianfeng, Tu Xu Development and Application of Toothed Rail Railway Technology Abroad [J]. Locomotive Electric Transmission, 2019, No.267 (02): 9-15 DOI: 10.13890/ j.issn. 1000-128x. 2019. 02. 002. [8] 黄志相, 余浩伟, 李涛. 山地旅游景区齿轨铁路总体设计研究[J]. 铁道勘察, 2021, 47(01): 64-67. DOI: 10.19630/j. cnki. tdkc. 202003250001. HUANG Zhixiang, Yu Haowei, Li Tao Research on Overall Design of Tooth trackway in Mountain tourist attraction [J] Railway Survey, 2021, 47 (01): 64-67 DOI: 10.19630/j. cnki. tdkc. 202003250001. [9] 赵冠闯, 冯济桥, 丁军君等. 车体重心高度和转动惯量对齿轨车辆动力学性能的影响[J]. 铁道标准设计, 2021,65(09): 181-186+193. DOI:10.13238/ j.issn. 1004-2954. 202009120006. ZHAO Guanchuang, Feng Jiqiao, Ding Junjun, etc Influence of height of body center of gravity and moment of inertia on dynamic performance of gear rail vehicle dynamics [J] Railway Standard Design, 2021,65 (09): 181-186+193 DOI:10.13238/ j.issn. 1004-2954. 202009120006. [10] Zhaowei Chen,Shihui Li,Miao Yuan,等. 齿轨车辆-轨道(齿轨)系统耦合动力学模型及其基本振动特性[J]. (2023-06-09)[2023-08-08].https://kns.cnki.net/kcms2/detail/11.5844.TH.20230607.1724.002.html. [11] 刘宗峰.齿轨铁路设计规范编制中桥梁荷载取值研究[J].铁道标准设计, 2019,63(12): 102-106. DOI: 10.13238/ j.issn. 1004-2954. 201901270001. LIU Zongfeng. Research on Bridge Load Values in the Compilation of Design Specifications for Toothed Rail Railways [J]. Railway Standard Design, 2019,63 (12): 102-106 DOI: 10.13238/ j.issn. 1004-2954. 201901270001. [12] 刘丽丽, 蒋丽忠, 周旺保等. 不同轨道板系统梁体线性变化对钢轨映射变形敏感性分析[J]. 铁道标准设计, 2022, 66(07):7-24.DOI:10.13238/j.issn. 1004-2954. 202104120003. Liu Lili, Jiang Lizhong, Zhou Wangbao, etc Sensitivity analysis of linear changes in beam body of different track slab systems to rail mapping deformation [J] Railway Standard Design, 2022, 66 (07): 7-24. DOI: 10.13238/j.issn. 1004-2954. 202104120003. [13] 冯玉林,蒋丽忠,曾永平等.连续梁桥典型变形对轨道几何形位演变的影响[J]. 铁道工程学报, 2021, 38(01): 91-96. FENG Yulin, Jiang Lizhong, Zeng Yongping, et al. The influence of typical deformation of continuous beam bridges on the evolution of track geometry [J] Journal of Railway Engineering, 2021, 38 (01): 91-96. [14] 张鹏飞, 连西妮, 桂昊等. 墩底沉降对桥上CRTSⅡ型板式无砟轨道纵向力的影响[J]. 北京交通大学学报, 2020, 44(01): 113-119. ZHANG Pengfei, Lian Xini, Gui Hao, etc Influence of pier bottom settlement on longitudinal force of CRTS Ⅱ slab ballastless track on bridge [J] Journal of Beijing Jiaotong University, 2020, 44 (01): 113-119. [15] 陈天浩, 杨建伟, 王金海. 高速铁路桥墩沉降与无砟轨道底座板脱空区域的映射关系[J]. 铁道标准设计, 2022, 66(01):41-48.DOI:10.13238/j.issn.1004-2954.202101250010. CHEN Tianhao, Yang Jianwei, Wang Jinhai Mapping relationship between high-speed railway pier settlement and ballastless track baseplate void area [J] Railway Standard Design, 2022, 66 (01): 41-48. DOI: 10.13238/j.issn.1004-2954.2021250010. [16] 李龙, 徐昕宇, 梁长海. 高铁桥梁典型长期变形对列车响应的影响研究[J]. 铁道标准设计, 2022, 66(09):107-111.DOI:10.13238/j.issn.1004-2954.202105260005. LI Long, Xu Xinyu, Liang Changhai Research on the Influence of Typical Long Term Deformation of High Speed Rail Bridges on Train Response [J] Railway Standard Design, 2022, 66 (09): 107-111. DOI: 10.13238/j.issn.1004-2954.202105260005. [17] 李伟强,冯洋,赵春发.桥梁竖向变形引起的中低速磁浮轨道不平顺分析[J].铁道标准设计, 2021, 65(06): 77-82. DOI:10.13238/j.issn. 1004-2954.202006230010. LI Weiqiang, Feng Yang, Zhao Chunfa. Analysis of irregularities in medium and low speed maglev tracks caused by vertical deformation of bridges [J]. Railway Standard Design, 2021, 65 (06): 77-82 DOI:10.13238/j.issn. 1004-2954.202006230010. [18] 王少杰, 徐赵东, 李舒等. 简支梁桥线形变化对轻轨列车单双线运行性的影响及差异[J]. 中南大学学报(自然科学版), 2017, 48(06): 1674-1681. WANG Shaojie, Xu Zhaodong, Li Shu, etc The Influence and Differences of Linear Changes of Simply Supported Beam Bridges on the Operational Performance of Light Rail Trains on Single and Double Tracks [J] Journal of Central South University (Natural Science Edition), 2017, 48 (06): 1674-1681. [19] 王昆鹏, 夏禾, 郭薇薇等. 桥墩不均匀沉降对高速列车运行安全影响研究[J]. 振动与冲击,2 014, 33(06): 137- 142+ 155. DOI: 10.13465/ j.cnki. jvs. 2014.06.025. WANG Kunpeng, Xia He, Guo Weiwei, etc Research on the Impact of Uneven Settlement of Bridge Piers on the Safety of High Speed Train Operation [J] Vibration and Shock, 2 014, 33 (06): 137-142+155 DOI:10.13465/j.cnki.jvs.2014.06.025. [20] 陈兆玮. 桥梁收缩徐变诱发高速列车-CRTS Ⅱ型板式轨道-桥梁系统非线性动力相互作用研究[J]. 振动与冲击, 2021,40(12):1-8+22.DOI:10.13465/j.cnki.jvs.2021.12.001. CHEN Zhaowei Research on Nonlinear Dynamic Interaction of High Speed Train-CRTS II Plate Track Bridge System Induced by Bridge Shrinkage and Creep [J] Vibration and Shock, 2021,40 (12): 1-8+22. DOI: 10.13465/j.cnki.jvs.2021.12.001. [21] 陈兆玮, 孙宇, 翟婉明. 高速铁路桥墩沉降与钢轨变形的映射关系(Ⅰ): 单元板式无砟轨道系统[J]. 中国科学: 技术科学, 2014, 44(07):770-777. CHEN Zhaowei, Sun Yu, Zhai Wanming Mapping relationship between high-speed railway pier settlement and rail deformation (Ⅰ): unit slab ballastless track system [J] Chinese Science: Technical Science, 2014, 44 (07): 770-777. [22] 孙文静, 周劲松, 宫岛. 基于Timoshenko梁模型的车辆-轨道耦合系统垂向随机振动分析[J]. 机械工程学报, 2014, 50(18):134-141. SUN Wenjing, Zhou Jinsong, Miyoshi Vertical random vibration analysis of vehicle track coupling system based on Timoshenko beam model [J] Journal of Mechanical Engineering, 2014, 50 (18): 134-141. [23] 张波波, 蔡丽, 方杰等. 基于有限元法的齿轮时变啮合刚度计算方法研究[J]. 机械传动, 2019, 43(11): 74-77+83.DOI: 10.16578/j.issn. 1004. 2539. 2019. 11. 013. ZHANG Bobo, Cai Li, Fang Jie, etc Research on the Calculation Method of Gear Time-Varying Meshing Stiffness Based on Finite Element Method [J] Mechanical transmission, 2019, 43 (11): 74-77+83. DOI: 10.16578/j.issn.1004 2539. 2019. 11. 013. [24] 菅光霄, 王优强, 于晓等. 振动与接触冲击耦合作用下的齿轮弹流润滑研究[J]. 振动与冲击, 2020, 39(21): 226-232. DOI:10.13465/j.cnki.jvs.2020.21.030. KAN Guangxiao, Wang Youqiang, Yu Xiao, etc Research on gear elastohydrodynamic lubrication under the coupling effect of vibration and contact shock [J] Vibration and Shock, 2020, 39 (21): 226-232 DOI:10.13465/j.cnki.jvs.2020.21.030. [25] 翟婉明. 车辆-轨道耦合动力学[M]. 科学出版社, 2015. ZHAI Wanming. Vehicle-track Coupled Dynamics[M]. Science Press, 2015.

PDF(2818 KB)

Accesses

Citation

Detail

段落导航
相关文章

/