大跨度双幅非对称平行主梁涡激振动干扰效应研究

宋玉冰,遆子龙,杨凌,李永乐,李泽腾

振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 1-9.

PDF(5011 KB)
PDF(5011 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 1-9.
论文

大跨度双幅非对称平行主梁涡激振动干扰效应研究

  • 宋玉冰,遆子龙,杨凌,李永乐,李泽腾
作者信息 +

Influences of aerodynamic interference effect on VIV performance of large-span asymmetrical twin parallel decks

  • SONG Yubing, TI Zilong, YANG Ling, LI Yongle, LI Zeteng
Author information +
文章历史 +

摘要

在双幅式桥梁的建设中,公路与铁路同层并排布置的大跨双幅非对称主梁属于较特殊的设计。由于公路桥与铁路桥的动力特性不一致、主梁尾流特性差异较大以及非对称双梁间存在特殊且显著的气动干扰,使得非对称双幅主梁的涡激振动特性更为复杂。为系统探究干扰效应对主梁涡振性能的影响,本研究以一座大跨度公铁两用双幅桥为研究背景,开展了双幅主梁涡激振动风洞试验与流固耦合数值模拟,其中公路梁为Π型叠合梁,铁路梁为流线型箱梁。研究结果表明:(1)公路梁位于迎风侧时出现了较大幅值的竖弯和扭转振动,且风速区间与结构振动频率具有典型涡振“锁定”特征,而位于背风侧时振动现象基本消失。(2)铁路梁位于迎风侧时未见明显振动现象,而位于背风侧时,试验观察到了大幅振动,且振幅具有迅速上升又迅速下落的特点,无明显“锁定”区间。(3)数值流场表明,公路位于不同位置处(迎背风侧)时,主梁附近涡结构的尺度与分布均有明显不同。位于迎风侧时下桥面腔内大尺度漩涡的存在以及涡结构的周期性变化是位于迎风侧时产生涡振的主要原因;位于背风侧时,受干扰效应影响,下桥面腔内漩涡尺度减小,升力振荡频率改变,涡振锁定现象消失。(4)铁路附近流场及压力分布表明,铁路位于迎风侧时,主梁附近流场稳定,自激升力近似为直流力;位于背风侧时受公路尾流的干扰,铁路表面存在较大面积的负压区,公路尾流的脉动导致了铁路气动升力的振荡,因而产生了大幅振动。本文系统研究了双幅非对称平行主梁间气动干扰效应对涡振性能的影响,揭示了涡振及气动干扰机理,为类似桥梁的工程设计提供了参考依据。

Abstract

During the construction of twin decks, the long-span asymmetrical twin parallel decks represent a unique design, where both the highway and railway are arranged side by side at the same elevation. Due to the disparate dynamic characteristics of the highway bridge and the railway bridge, the considerable variation in wake characteristics of the decks, as well as the pronounced and consequential aerodynamic interference between the asymmetrical twin decks, the vortex-induced vibration (VIV) characteristics of the asymmetric twin decks become considerably more intricate. To comprehensively investigate the impact of interference effects on the VIV behavior of decks, a series of wind tunnel tests and fluid-structure interaction numerical simulations were conducted on twin decks. These experiments and simulations were conducted in the context of a long-span asymmetrical twin separated parallel deck configuration, where the highway deck was designed as a Π-type superimposed deck and the railway deck was a streamlined box deck. The research findings indicate the following: (1) The Π-type highway deck exhibited significant vertical bending and torsional vibrations when exposed to the windward side, showing typical VIV "lock-in" characteristics between the wind speed range and the structural vibration frequencies. However, these vibrations diminished when the deck was on the leeward side. (2) The streamlined railway deck showed no significant vibrations when positioned on the windward side, but substantial vibrations were observed on the leeward side, with amplitudes rapidly rising and falling, without a distinct "lock-in" range. (3) The numerical flow field indicates that the scale and distribution of vortical structures near the deck vary significantly when the highway is located at different positions (windward and leeward sides). The presence of large-scale vortices in the cavity below the bridge deck and the periodic variation of vortical structures are the main reasons for vortex-induced vibration on the windward side. On the leeward side, influenced by the disturbance effect, the scale of vortices in the cavity below the bridge deck decreases, the oscillation frequency of lift changes, and the phenomenon of vortex-induced vibration lock-in disappears. (4) Flow fields and pressure distributions near the railway revealed stable flow patterns when positioned on the windward side, with self-excited lift forces approximating steady forces. However, when positioned on the leeward side, the railway surface experienced a larger negative pressure area due to the interference of the highway wake, leading to significant vibrations caused by the pulsation of the highway wake and resulting in oscillations of the railway's aerodynamic lift. This study systematically investigated the aerodynamic interference effects between asymmetrical twin parallel main girders and their impact on VIV performance. The underlying VIV and aerodynamic interference mechanisms were revealed, providing valuable insights for the engineering design of similar bridges.

关键词

桥梁工程 / 非对称双幅主梁 / 气动干扰 / 涡激振动 / 风洞试验 / 数值模拟

Key words

bridge engineering / asymmetrical twin decks / aerodynamic interference / vortex-induced vibration (VIV) / wind tunnel test / numerical simulation

引用本文

导出引用
宋玉冰,遆子龙,杨凌,李永乐,李泽腾. 大跨度双幅非对称平行主梁涡激振动干扰效应研究[J]. 振动与冲击, 2024, 43(7): 1-9
SONG Yubing, TI Zilong, YANG Ling, LI Yongle, LI Zeteng. Influences of aerodynamic interference effect on VIV performance of large-span asymmetrical twin parallel decks[J]. Journal of Vibration and Shock, 2024, 43(7): 1-9

参考文献

[1] Wu T, Kareem A. An overview of vortex-induced vibration (VIV) of bridge decks[J]. Frontiers of Structural and Civil Engineering, Springer, 2012, 6(4): 335–347. [2] 葛耀君,赵林,许坤. 大跨桥梁主梁涡激振动研究进展与思考[J]. 中国公路学报, 2019, 32(10): 1–18. GE Yaojun, ZHAO Lin, XU Kun. Review and Reflection on Vortex-induced Vibration of Main Girders of Long-span Bridges[J]. China Journal of Highway and Transport, 2019, 32(10): 1-18. [3] Li H, Laima S, Ou J, et al. Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements[J]. Engineering Structures, Elsevier, 2011, 33(6): 1894–1907. [4] Zhao L, Cui W, Shen X, et al. A fast on-site measure-analyze-suppress response to control vortex-induced-vibration of a long-span bridge[J]. Structures, 2022, 35: 192–201. [5] 郭震山,孟晓亮,周奇,朱乐东. 既有桥梁对邻近新建桥梁三分力系数的气动干扰效应[J]. 工程力学, 2010(09 vo 27): 181-186+200. GUO Zhenshan, MENG Xiaoliang, ZHOU Qi, ZHU Ledong. Aerodynamic interference effects of an existed bridge on aerodynamic coefficients of an adjacent new bridge [J]. Engineering Mechanics, 2010(09 vo 27): 181-186+200. [6] 刘志文,陈政清. 串列双流线型断面涡激振动气动干扰试验[J]. 中国公路学报, 2011, 24(3): 51–57. LIU Zhi-wen, CHEN Zheng-qing, LI Xiao-hu, ZHOU Shuai, LU Jian-guo. Aerodynamic Interference Test on Vortex-induced Vibration of Two Streamline Cylinders in Tandem[J]. China Journal of Highway and Transport, 2011, 24(3): 51-57. [7] 刘志文,陈政清. 串列双幅典型断面三分力系数气动干扰效应[J]. 振动与冲击, 2015(05 vo 34): 6–13. LIU Zhiwen, CHEN Zhengqing. Aerodynamic interference effects on aerostatic coefficients of typical sections in tandem arrangement [J/OL]. Journal of Vibration and Shock, 2015(05 vo 34): 6-13. [8] 刘志文,吕建国,刘小兵,陈政清. 串列双幅断面颤振稳定性气动干扰试验研究[J]. 振动工程学报, 2016(03 vo 29): 403–409. LIU Zhiwen, LV Jianguo, LIU Xiaobing, CHEN Zhengqing. Experimental investigations of aerodynamic interference effects on flutter stability of cylinders in tandem arrangement [J/OL]. Journal of Vibration Engineering, 2016(03 vo 29): 403-409. [9] Seo J-W, Kim H-K, Park J, et al. Interference effect on vortex-induced vibration in a parallel twin cable-stayed bridge[J]. Journal of wind engineering and industrial aerodynamics, Elsevier, 2013, 116: 7–20. [10] 谭彪,操金鑫,檀小辉,葛耀君. 间距比对叠合梁双幅桥涡振性能的影响[J]. 同济大学学报(自然科学版), 2020(09 vo 48): 1264–1270. TAN Biao, CAO Jinxin, TAN Xiaohui, GE Yaojun. Effect of gap distance ratio on vortex-induced vibration performance for bridge with twin composite girders [J]. Journal of Tongji University (Natural Science), 2020(09 vo 48): 1264-1270. [11] 周奇,朱乐东. 平行双幅斜拉桥涡振特性气弹模型试验研究[J]. 振动工程学报, 2013(04 vo 26): 522–530. ZHOU Qi,ZHU Ledong. Study on vortex-induced oscillation of parallel bridge with twin-decks via aeroelastic model test[J].Journal of Vibration Engineering,2013,26(4):522. [12] Park J, Kim H-K. Effect of the relative differences in the natural frequencies of parallel cable-stayed bridges during interactive vortex-induced vibration[J]. Journal of Wind Engineering and Industrial Aerodynamics, Elsevier, 2017, 171: 330–341. [13] Park J, Kim S, Kim H-K. Effect of gap distance on vortex-induced vibration in two parallel cable-stayed bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, Elsevier, 2017, 162: 35–44. [14] JTG/T 3360-01—2018,公路桥梁抗风设计规范[S]. JTG/T 3360-01—2018, Wind-resistant design specification for highway bridges [S]. [15] Chen X, Li Y, Xu X, et al. Evolution laws of distributed vortex-induced pressures and energy of a flat-closed-box girder via numerical simulation[J]. Advances in Structural Engineering, SAGE Publications Sage UK: London, England, 2020, 23(13): 2776–2788. [16] Chen W-L, Yang W-H, Xu F, et al. Complex wake-induced vibration of aligned hangers behind tower of long-span suspension bridge[J]. Journal of Fluids and Structures, 2020, 92: 102829. [17] Simiu E, Scanlan R H. Wind effects on structures: fundamentals and applications to design[M]. John Wiley New York, 1996, 688. [18] 祝志文,陈魏. 桥梁主梁CFD模拟之基准模型测压试验与气动特性分析[J]. 中国公路学报, 2016, 29(11): 49-56,64. ZHU Zhiwen, CHEN Wei, YUAN Tao. Pressure Measurement and Aerodynamics Investigation on Benchmark Model of Bridge Girder for CFD Simulations[J]. China Journal of Highway and Transport, 2016, 29(11): 49-56,64. [19] Brusiani F, de Miranda S, Patruno L, et al. On the evaluation of bridge deck flutter derivatives using RANS turbulence models[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 119: 39–47. [20] Menter F, Esch T. Elements of industrial heat transfer predictions[C]// 2001, 109: 650. [21] Silva C, Pereira J. Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets[J]. Physics of Fluids, 2008, 20(5): 765.

PDF(5011 KB)

Accesses

Citation

Detail

段落导航
相关文章

/