二维声学黑洞应用于压电振动能量收集

陈兵,张杨坤,任江,尹忠俊

振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 10-17.

PDF(2595 KB)
PDF(2595 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 10-17.
论文

二维声学黑洞应用于压电振动能量收集

  • 陈兵,张杨坤,任江,尹忠俊
作者信息 +

Application of 2-D acoustic black hole in piezoelectric vibration energy collection

  • CHEN Bing, ZHANG Yangkun, REN Jiang, YIN Zhongjun
Author information +
文章历史 +

摘要

声学黑洞(Acoustic Black Hole,ABH)效应可以产生强烈的能量集中,能够将高频率低振幅的低品质振动能量转化为高振幅的高品质振动能量,从而便于利用。本文提出并研究了一种环形二维声学黑洞压电能量收集装置。有限元分析结果表明,环形二维ABH结构能在宽频域内显著提高能量收集效率。搭建了环形二维声学黑洞压电能量收集器实验测试平台,通过实验验证了仿真结果的正确性。与经典二维ABH结构相比,环形二维ABH结构具有更好的能量收集效率和结构强度。分析了压电片几何尺寸等因素对装置能量收集效率的影响,得到了能获得较高输出功率的几何尺寸范围,并进行了正交试验设计,研究了截断厚度、压电片尺寸、中央平台直径、幂指数等多因素的综合影响。

Abstract

The Acoustic Black Hole (ABH) effect can generate strong energy concentration, which can convert low-quality vibration energy of high frequency and low amplitude into high-quality vibration energy of high amplitude, so as to facilitate utilization. A piezoelectric energy harvesting device for a circular two-dimensional acoustic black hole is proposed. The finite element analysis results show that the annular two-dimensional ABH structure can significantly improve the energy collection efficiency in the wide band domain. The experimental test platform of circular two-dimensional acoustic black hole piezoelectric energy collector is built, and the correctness of the simulation results is verified by experiments. Compared with the classical two-dimensional ABH structure, the annular two-dimensional ABH structure has better energy collection efficiency and structural strength. The influence of the geometric size of the piezoelectric plate on the energy collection efficiency of the device was analyzed, and the geometric size range of the higher output power was obtained. The orthogonal test design was carried out to study the comprehensive influence of the truncation thickness, the size of the piezoelectric plate, the diameter of the central platform, the power exponent, and other factors.

关键词

弹性波 / 声学黑洞 / 能量收集 / 机电耦合

Key words

Flexural wave;Acoustic black hole;Energy harvesting / Electromechanical coupling

引用本文

导出引用
陈兵,张杨坤,任江,尹忠俊. 二维声学黑洞应用于压电振动能量收集[J]. 振动与冲击, 2024, 43(7): 10-17
CHEN Bing, ZHANG Yangkun, REN Jiang, YIN Zhongjun. Application of 2-D acoustic black hole in piezoelectric vibration energy collection[J]. Journal of Vibration and Shock, 2024, 43(7): 10-17

参考文献

[1] MIRONOV M A, Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval[J], Soviet Physics Acoustics, 34 (3)(1988) 318-319. [2] Krylov V V . Propagation of plate bending waves in the vicinity of one- and two-dimensional acoustic 'black holes'[C]// Eccomas Thematic Conference on Computational Methods in Structural Dynamics & Earthquake Engineering. OAI, 2007. [3] KRYLOV V V.,Localized acoustic modes of a quadratic solid wedge[J]. Moscow University Physics Bulletin, 1990, 45(6):65-69. [4] KARLOS A,ELLIOTT S J,Cheer J.Higher-order WKB analysis of reflection from tapered elastic wedges[J]. Journal of Sound and Vibration, 2019(449):368-388. [5] DENG Jie,GUASCH O,ZHENG L,et.al. Semi-analytical model of an acoustic black hole piezoelectric bimorph cantilever for energy harvesting[J].Journal of Sound and Vibration,2021(494):115790. [6] MA Y B , DENG Z C,A semi-analytical method for the dispersion analysis of orthotropic composite plates with periodically attached acoustic black hole resonators[J], Applied Mathematical Modelling,2022(110):562-582. [7] TANG L L,CHENG L,JI H L,et.al,Characterization of acoustic black hole effect using a one-dimensional fully-coupled and wavelet-decomposed semi-analytical model[J],Journal of Sound and Vibration, 2016(374):172-184. [8] HUANG W, JI H L,QIU J H, et.al,Analysis of ray trajectories of flexural waves propagating over generalized acoustic black hole indentations[J],Journal of Sound and Vibration,2018(417):216-226. [9] ZHOU T,CHAZOT J.D.,PERREY-DEBAIN E.,et.al.,Partition of Unity Finite Element Method for the modelling of Acoustic Black Hole wedges[J],Journal of Sound and Vibration,2020(475-):475. [10] PELAT A,GAUTIER F,CONLON S C,et.al.,The acoustic black hole: A review of theory and applications[J],Journal of Sound and Vibration, 2020:115316. [11] BAYOD J J.Application of Elastic Wedge for Vibration Damping of Turbine Blade[J]. Journal of System Design and Dynamics,2011,5(5). [12] BOWYER E P, KRYLOV V V,Damping of flexural vibrations in turbofan blades using the acoustic black hole effect[J],Applied Acoustics, 2014(76):359-365. [13] TANG L L,CHENG L,Periodic plates with tunneled Acoustic-Black-Holes for directional band gap generation[J],Mechanical Systems and Signal Processing ,2019(133):106257. [14] TANG L L,CHENG L. Ultrawide band gaps in beams with double-leaf acoustic black hole indentations.[J]. The Journal of the Acoustical Society of America,2017, 142(5):2802-2807. [15] ZHAO L X,Low-frequency vibration reduction using a sandwich plate with periodically embedded acoustic black holes,Journal of Sound and Vibration,2019(441):165-171. [16] ZHU H,SEMPERLOTTI F,Improving the performance of structure-embedded acoustic lenses via gradient-index local inhomogeneities[J]. International Journal of Smart and Nano Materials,2015,6(1):1-13. [17] ZHU H F,SEMPERLOTTI F. Two-dimensional structure-embedded acoustic lenses based on periodic acoustic black holes[J]. Journal of Applied Physics,2017,122(6):065104 [18] GANTI S S,LIU T W,et.al.,Topological edge states in phononic plates with embedded acoustic black holes[J],Journal of Sound and Vibration,2020(466):115060. [19] 赵泽翔,王光庆,王学保,等.三稳态压电能量采集器的动态特性与实验[J].振动、测试与诊断,2020, 40(4):668-672. ZHAO Zexiang, WANG Guangqin, Wang Xuebao, et al.. Dynamic characteristics and experimental analysis of tri-stable piezoelectric energy harvester[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(4):668-672.. [20] 彭乐乐,钟倩文,郑树彬,等. 两端固支式双晶片压电梁建模及发电特性分析[J]. 振动、测试与诊断, 2022, 42(4): 784-790. PENG Lele, ZHONG Qianwen, ZHENG Shubin, et al.. Dynamic characteristics and experimental analysis of tri-stable piezoelectric energy harvester[J]. Journal of Vibration, Measurement & Diagnosis, 2022, 42(4):784-790. [21] 陈兵,石雨桐,张利杰.基于宽频-多模态的复合俘能器的解析模型与实验研究[J].振动与冲击,2020, 39(13):199-206. CHEN Bing, SHI Yutong, ZHANG Lijie, et al. Analytical model and experimental study of a composite energy harvester based on Broadband and multimode [J].Journal of Vibration and Shock, 2020, 39(13):199-206. [22] ZHAO L X,SEMPERLOTTI F, CONLON S C,An experimental study of vibration based energy harvesting in dynamically tailored structures with embedded acoustic black holes[J], Smart Mater Struct,2015,24(6): 065039. [23] ZHAO L X,CONLON S C,SEMPERLOTTI F, Broadband energy harvesting using acoustic black hole structural tailoring[J], Smart Mater Struct, 2014,23(6): 065021. [24] DENG J,GUASCH O,ZHENG L,A semi-analytical method for characterizing vibrations in circular beams with embedded acoustic black holes[J],Journal of Sound and Vibration,2020(476): 115307. [25] LI H Q, Doaré O, Touzé C,et.al.,François Gautier,Energy harvesting efficiency of unimorph piezoelectric acoustic black hole cantilever shunted by resistive and inductive circuits[J],International Journal of Solids and Structures, 2022(238): 111409. [26] ZHANG L L,KERSCHEN Gaetan,CHENG L,Nonlinear features and energy transfer in an Acoustic Black Hole beam through intentional electromechanical coupling[J], Mechanical Systems and Signal Processing, 2022(177): 109244. [27] 黄薇, 季宏丽, 裘进浩,等.二维声学黑洞对弯曲波的能量聚集效应[J]. 振动与冲击, 2017, 36(9):51-58. HUANG Wei, JI Hongli, QIU JInhao, et al. Energy concentration effect of two-dimensional acoustic black holes on curved waves [J]. Journal of Vibration and Shock, 2017, 36(9):51-58.

PDF(2595 KB)

516

Accesses

0

Citation

Detail

段落导航
相关文章

/