基于大涡模拟的CAARC模型角区开槽气动优化研究

徐洲洋,罗凯文,杨易

振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 126-133.

PDF(3351 KB)
PDF(3351 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 126-133.
论文

基于大涡模拟的CAARC模型角区开槽气动优化研究

  • 徐洲洋,罗凯文,杨易
作者信息 +

Aerodynamic optimization of corner slotting in CAARC model based on LES

  • XU Zhouyang, LUO Kaiwen, YANG Yi
Author information +
文章历史 +

摘要

超高层建筑属风敏感结构,对建筑外形进行适当气动优化可有效降低结构风荷载及风致响应。本文基于大涡模拟(LES)方法,采用作者团队建议的一种新的入口湍流生成方法——NSRFG方法,进行超高层建筑标准模型(CAARC)角区开槽的气动优化研究。首先进行了CAARC高层建筑标准模型绕流模拟,并将模拟结果与风洞试验结果对比,以验证NSRFG方法的适用性;然后以CAARC模型为基础,设计了4种开槽气动优化方案,通过LES模拟得到基底弯矩功率谱,以估算建筑顶部位移响应和顶部峰值加速度响应。结果对比显示:(1)对于矩形截面高层建筑标模,无论原型还是4种开槽气动优化方案,横风向脉动响应和峰值加速度响应整体比顺风向大(2)与全封闭原型相比,采取不同开槽方案均能降低顺风向和横风向风振响应,其中角区开槽对顺风向响应的优化效果最好,周向开槽对横风向响应的优化效果最好;(3)4种开槽方案对于横风向响应的优化效果明显优于顺风向,其中相对而言周向开槽优化效果相对最好,使横风向脉动位移响应和横风向峰值加速度响应分别降低28.4%、32.8%。因此,从减小矩形截面超高层建筑结构横风向响应角度考虑建议采用周向开槽方案。

Abstract

Super high-rise buildings are wind-sensitive structures, and appropriate aerodynamic optimization of building shape can effectively reduce the structural wind load and wind-induced response. Based on the large eddy simulation (LES) method, a new inflow turbulence generation - the NSRFG (Narrow band Synthesis Random Flow Generation) were used to investigate the effects of corner aerodynamic modification of the standard high-rise building model. First, the CAARC high-rise building standard model flow simulation was carried out, and the simulation results were compared with the wind tunnel test results to verify the applicability of the NSRFG method; then, based on the CAARC model, totally 4 corner modification schemes were designed and the base moments power spectrum were obtained through the LES simulation to estimate the top displacement and peak acceleration responses of the building. The results showed that: (1) For the standard high-rise building model with rectangular section, regardless of prototype or 4 modification schemes, the cross-wind fluctuation and peak acceleration are larger than that of the along-wind. (2) Compared with the prototype, all 4 modification schemes can reduce the wind-induced vibration response in along-wind and cross-wind directions, among which the corner slotting has the best optimization performance on along-wind response and the circumferential slotting has the best optimization performance on cross-wind response; (3) The optimization performance of the 4 modification schemes for the cross-wind response is obviously better than that for the along-wind response. Among the schemes, the circumferential slotting is the best, which can reduce the cross-wind fluctuating displacement and peak acceleration by 28.4% and 32.8%, respectively. Therefore, the circumferential slotting scheme is suggested to reduce the cross-wind response of super high-rise buildings with rectangular section.

关键词

大涡模拟 / NSRFG方法 / 超高层建筑 / 风致响应 / 气动优化

Key words

large eddy simulation / NSRFG method / super high-rise building / wind-induced response / aerodynamic optimization

引用本文

导出引用
徐洲洋,罗凯文,杨易. 基于大涡模拟的CAARC模型角区开槽气动优化研究[J]. 振动与冲击, 2024, 43(7): 126-133
XU Zhouyang, LUO Kaiwen, YANG Yi. Aerodynamic optimization of corner slotting in CAARC model based on LES[J]. Journal of Vibration and Shock, 2024, 43(7): 126-133

参考文献

[1] Gu M, Quan Y. Across-wind loads of typical tall buildings[J]. Journal of Wind Engineering & Industrial Aerodynamics. 2004, 92(13): 1147-1165. [2] 严亚林,唐意,金新阳. 气动外形对高层建筑风荷载的影响研究[J]. 建筑结构学报, 2014(04): 297-303. Yan Yalin, Tang Yi, Jin Xinyang. Research on aerodynamic shape effects on wind load of high-rise buildings[J]. Journal of Building Structures, 2014(04): 297-303. [3] Yi Li, Xiang Tian, Kong Fah Tee, Qiu-Sheng Li, Yong-Gui Li. Aerodynamic treatments for reduction of wind loads on high-rise buildings[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2018, 172. [4] Lu Wei-Ting, Phillips Brian M., Jiang Zhaoshuo. Effects of side and corner modification on the aerodynamic behavior of high-rise buildings considering serviceability and survivability[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2023, 233. [5] 庄翔,郑毅敏,郑晓芬,董欣.不同圆角率下矩形高层建筑风荷载特性[J].建筑结构学报, 2018, 39(S1): 1-8. Zhuang Xiang, Zheng Yimin, Zheng Xiaofen, Dong Xin. Wind load characteristics of rectangular high-rise buildings with various rounded corner ratios[J]. Journal of Building Structures, 2018, 39(S1): 1-8. [6] 董欣,丁洁民,邹云峰,左太辉.倒角化处理对于矩形高层建筑风荷载特性的影响机理研究[J]. 工程力学, 2021, 38(06): 151-162+208. Dong Xin, Ding Jiemin, Zou Yunfeng, Zuo Taihui. Effect Of Rounded Corners On Wind Load Characteristics Of Rectangular tall buildings[J]. Engineering Mechanics, 2021, 38(06): 151-162+208. [7] Li Yi, Song Qian, Li Chao, Huang Xuan, Zhang Yan. Reduction of wind loads on rectangular tall buildings with different taper ratios[J]. Journal of Building Engineering, 2022, 45. [8] 谢壮宁,石碧青,倪振华,杜平.深圳京基金融中心气动抗风措施试验研究[J].建筑结构学报, 2010, 31(10): 1-7. Xie Zhuangning, Shi Biqing, Ni Zhenhua, Alex To. Experimental study on reduction of wind loads on the Shenzhen Kingkey Financial Tower by aerodynamic strategy[J]. Journal of Building Structures, 2010, 31(10): 1-7. [9] 谢壮宁,李佳. 强风作用下楔形外形超高层建筑横风效应试验研究[J]. 建筑结构学报. 2011(12): 118-126. Xie Zhuangning, Li Jia. Experimental research on cross wind effect on tapered super-tall buildings under action of strong wind[J]. Journal of Building Structures, 2011(12): 118-126. [10] 谢壮宁,李佳,石碧青. 3栋典型超高层建筑气动荷载特性及风振控制措施[J]. 建筑结构学报. 2014(04): 289-296. Xie Zhuangning, Li Jia, Shi Biqing. Aerodynamic loading properties and strategy of reduction of three typical super tall buildings[J]. Journal of Building Structures, 2014(04): 289-296. [11] Elshaer A, Girma B, Ashraf E D. Enhancing wind performance of tall buildings using corner aerodynamic optimization[J]. Engineering Structures. 2017, 136: 133-148. [12] 余远林, 杨易, 刘付均, 等. 南宁五象东盟塔风振响应大涡模拟研究[J]. 振动与冲击, 2018, 37(21): 78-86. Yu Yuanlin, Yang Yi, Liu Fujun, et al. Large-eddy simulation for wind-induced responses of Nanning Wuxiang ASEAN Tower[J]. Journal of Vibration and Shock, 2018,37(21):78-86. [13] 罗凯文. 基于大涡模拟的超高层建筑局部气动措施研究[D]. 华南理工大学, 2018. Luo Kaiwen. Research on local aerodynamic measures for super high-rise buildings based on large eddy simulation[J]. South China University of Technology, 2018. [14] Marie S.T, Jens C. B, Stefano C, Andreas K, et all. Towards a standard CFD setup for wind load assessment of high-rise buildings: Part 2–Blind test of chamfered and rounded corner high-rise buildings[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2020, 205. [15] 郑德乾, 刘帅永, 马文勇等. 倒角切角对方柱气动性能影响的大涡模拟研究[J]. 振动与冲击, 2021, 40(01): 8-14. Zheng Deqian. Liu Shuaiyong, Ma Wenyong, et al. Large eddy simulation for effects of chamfering and corner cut on aerodynamic performance of square cylinder[J]. Journal of Vibration and Shock, 2021, 40(1): 8-14. [16] 郑德乾, 祝瑜哲, 马文勇等. 上游切角倒角小间距比串列方柱大涡模拟研究[J]. 振动与冲击, 2022, 41(07): 37-45+61. Zheng Deqian, Zhu Yuzhe, Ma Wenyong, et al. Large eddy simulation for small spacing ratio tandem two square cylinders with upstream column corner cutting and chamfering[J]. Journal of Vibration and Shock, 2022, 41(07): 37-45+61. [17] Marie Skytte Thordal,Jens Chr. Bennetsen,H. Holger H. Koss. Review for practical application of CFD for the determination of wind load on high-rise buildings[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2019, 186. [18] Smirnov A.,Shi S.,Celik I.. Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling[J]. Journal of Fluids Engineering, 2001, 123(2). [19] Huang S H, Li Q S, Wu J R. A general inflow turbulence generator for large eddy simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98: 600-617. [20] Aboshosha H, Elshaer A, Bitsuamlak G T, et al. Consistent inflow turbulence generator for LES evaluation of wind-induced responses for tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 142: 198-216. [21] Yu Y, Yang Y, Xie Z. A new inflow turbulence generator for large eddy simulation evaluation of wind effects on a standard high-rise building[J]. Building& Environment, 2018, 138: 300-313. [22] Yang Gao, Ming Gu, Yong Quan, Chengdong Feng. Large eddy simulation of blockage effects in the assessment of wind effects on tall buildings[J]. Wind and Structures, 2020, 30(6). [23] 胡晓兵, 杨易. 基于NSRFG方法的标准地貌风场大涡模拟研究[J].工程力学, 2020, 37(09): 112-122. Hu Xiaobing, Yang Yi. Research on NSRFG-based LES simulation for standard wind terrains[J]. Engineering Mechanics, 2020, 37(09): 112-122. [24] 杨易,季长慧,张之远,胡晓兵.一种改进的大涡模拟入口湍流生成方法研究[J].工程力学, 2021,38(12):17-24. Yang Yi, Ji Changhui, Zhang Zhiyuan, Hu Xiaobing. Research on an improved inflow turbulence generation approach for large eddy simulation[J]. Engineering Mechanics, 2021, 38(12): 17-24. [25] Chen Lingwei, Li Chao, Wang Jinghan, Hu Gang, Zheng Qingxing, Zhou Qingfeng, Xiao Yiqing. Consistency improved random flow generation method for large eddy simulation of atmospheric boundary layer[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2022, 229. [26] Braun A L,Awruch A M. Aerodynamic and aeroelastic analyses on the CAARC standard tall building model using numerical simulation[J]. Computers and Structures, 2009, 87(9-10): 564-581.

PDF(3351 KB)

Accesses

Citation

Detail

段落导航
相关文章

/