不同连接构造的预制拼装钢管混凝土桥墩数值模拟与地震响应特点

陈挺地1,王胜斌2,冯克岩3,李建中1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 134-143.

PDF(4348 KB)
PDF(4348 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 134-143.
论文

不同连接构造的预制拼装钢管混凝土桥墩数值模拟与地震响应特点

  • 陈挺地1,王胜斌2,冯克岩3,李建中1
作者信息 +

Numerical simulation and seismic response characteristics of prefabricated assembled concrete filled steel tube columns with different connection constructions

  • CHEN Tingdi1, WANG Shengbin2, FENG Keyan3, LI Jianzhong1
Author information +
文章历史 +

摘要

无粘结预应力节段拼装钢管混凝土桥墩主要包括承插连接与混合连接两种承台连接方式。为比较两种不同连接构造下桥墩的地震响应特点,本文采用OpenSees软件分别建立了桥墩有限元模型,其中,承插连接钢管混凝土桥墩模型能够考虑插入承台部分钢管与周围混凝土的粘结滑移、钢管局部屈曲以及屈曲后撕裂等过程,而混合连接钢管混凝土桥墩模型能够再现出接缝的摇摆行为;并通过与相关拟静力试验数据结果进行对比,验证了两种数值模型的有效性;随后,以一座4跨连续梁桥为背景,分别研究了采用混合连接、无预应力承插连接和预应力承插连接桥墩桥梁结构在地震作用时的响应特点。结果表明:两种承插连接桥墩的墩底钢管在地震动峰值加速度(PGA)约0.4g时发生屈曲,并伴随水平刚度下降和残余位移增大,且配置无粘结预应力的承插连接桥墩钢管屈曲引起的损伤程度更大,随着地震动输入进一步增大,预应力为桥墩提供的自复位能力逐步增加,在PGA = 0.6g时,预应力承插连接桥墩的残余位移仅为无预应力桥墩的62%。此外,配置混合连接桥墩的桥梁在地震作用下损伤较小,残余漂移比小于0.2%,比承插连接桥墩更优的自复位能力。

Abstract

The presented paper investigates the seismic performance of prefabricated concrete filled steel tube (CFT) columns with two typical column-footing connections: socket connection (SC) and hybrid connection (HC). Finite element models for both SC and HC columns were established in OpenSees software. The SC model is able to simulate the bond-slip between the embedded steel tube and its surrounding concrete, the local buckling and the tearing; while the HC model can simulate the rocking behavior at the column-footing interface. The effectiveness of both models was validated through previous experimental data. Then analyses were conducted to investigate the dynamic performance of a 4-span continuous bridge with the single-column piers with the HC, SC and post-tensioned SC connections, respectively. The results show that both the SC and post-tensioned SC columns experience steel tube buckling when peak ground acceleration (PGA) reaches about 0.4g, resulting in a reduction in the horizontal stiffness and an increase in the residual displacement. Moreover, the damage caused by steel tube buckling in the post-tensioned SC columns is more severe, and with the further increase of PGA, the self-centering capacity provided by the post-tensioning gradually becomes evident. When the PGA reaches 0.6g, the residual drift of post-tensioned SC column is only 62% of that in the SC column. The HC column sustains less damage under strong earthquake excitations, with the residual drift less than 0.2%. Thus, it has better self-centering capacity than both the SC connection columns.

关键词

桥梁工程 / 钢管混凝土桥墩 / 承插连接 / 混合连接 / 有限元模型 / 地震响应

Key words

bridge engineering / concrete filled steel tube column / socket connection / hybrid connection / finite element model / seismic behavior.

引用本文

导出引用
陈挺地1,王胜斌2,冯克岩3,李建中1. 不同连接构造的预制拼装钢管混凝土桥墩数值模拟与地震响应特点[J]. 振动与冲击, 2024, 43(7): 134-143
CHEN Tingdi1, WANG Shengbin2, FENG Keyan3, LI Jianzhong1. Numerical simulation and seismic response characteristics of prefabricated assembled concrete filled steel tube columns with different connection constructions[J]. Journal of Vibration and Shock, 2024, 43(7): 134-143

参考文献

[1] ZHANG Q,ALAM M S. State-of-the-Art Review of seismic-resistant precast bridge columns[J]. Journal of Bridge Engineering,2020,25(10): 03120001. [2] 周颖,吕西林. 摇摆结构及自复位结构研究综述[J]. 建筑结构学报,2011,32(09): 1-10. ZHOU Ying,LV Xilin. State-of-the-art on rocking and self-centering structures[J]. Journal of Building Structures,2011,32(09): 1-10. [3] 吕西林,武大洋,周颖. 可恢复功能防震结构研究进展[J]. 建筑结构学报,2019,40(02): 1-15. LU Xilin,WU Dayang. ZHOU Ying. State-of-the-art of earthquake resilient structures[J]. Journal of Building Structures,2019,40(02): 1-15. [4] MARSH M L,WERNLI M,GARRETT B E,et al. Application of accelerated bridge construction connections in moderate-to-high seismic regions[R]. NCHRP Research Report 698. Washington (DC): The National Academics Press,2011. [5]王志强,葛继平,魏红一等. 节段拼装桥墩抗震性能研究进展[J]. 地震工程与工程振动,2009,29(04): 147-154. WANG Zhiqiang,GE Jiping,WEI Hongyi,et al. Recent development in seismic research of segmental bridge columns[J]. Journal of Earthquake Engineering and Engineering Vibration,2009,29(04): 147-154. [6] 石岩,李军,秦洪果,等. 桥梁双柱式排架墩抗震性能研究进展述评[J]. 中国公路学报,2021,34(02): 134-154. SHI Yan,LI Jun,QIN Hongguo,et al. Review on seismic performance of bridge double-column bents[J]. China Journal of Highway and Transport,2021,34(02): 134-154. [7] 黄志,谌湘文,蒋丽忠等. 往复荷载作用下钢管混凝土格构式柱地震损伤模型及试验研究[J]. 振动与冲击,2022,41(19): 157-163-206. HUANG Zhi,CHEN Xiangwen,JIANG Lizhong,et al. Seismic damage model and tests of CFST latticed columns under repeated load[J]. Journal of Vibration and Shock,2022,41(19): 157-163-206. [8] 邱文亮,田甜,张哲. 反复荷载作用下钢管混凝土组合桥墩抗震性能试验研究[J]. 振动与冲击,2019,38(17): 156-164. QIU Wenliang,TIAN Tian,ZHANG Zhe.Experimental study on the seismic behavior of steel tube reinforced concrete bridge columns under cyclic loading[J]. Journal of Vibration and Shock,2019,38(17): 156-164. [9] KURAMA Y C,SRITHARAN S,FLEISCHMAN R B,et al. Seismic-resistant precast concrete structures: state of the art[J]. Journal of Structural Engineering,2018,144(4): 03118001. [10] 欧智菁,颜建煌,俞杰等. 装配式圆钢管约束混凝土桥墩抗震性能研究[J].振动与冲击,2022,41(18): 47-54. OU Zhijing,YAN Jianhuang,YU Jie,et al. Seismic performances of fabricated circular steel tube confined concrete piers[J]. Journal of Vibration and Shock,2019,38(17): 156-164. [11] 王景全,王震,高玉峰等. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学,2019,36(03): 1-23. WANG Jingquan,WANG Zhen,GAO Yufeng,et al. Review on seismic behavior of precast piers: new material,new concept,and new application[J]. Engineering Mechanics,2019,36(3): 1-23. [12] GOTO Y,JIANG K,OBATA M. Stability and Ductility of Thin-Walled Circular Steel Columns under Cyclic Bidirectional Loading[J]. Journal of Structural Engineering,2006,132(10): 1621-1631. [13] STEPHENS M T,BERG L M,LEHMAN D E,et al. Seismic CFST column-to-precast cap beam connections for accelerated bridge construction[J]. Journal of Structural Engineering,2016,139 142(9): 04016049. [14] STEPHENS M T,LEHMAN D E,ROEDER C W. Design of CFST column-to-foundation/cap beam connections for moderate and high seismic regions[J]. Engineering Structures,2016,122: 323-337. [15] GOTO Y,KUMAR G P,KAWANISHI N. Nonlinear finite-element analysis for hysteretic behavior of thin-walled circular steel columns with in-filled concrete[J]. Journal of Structural Engineering,2010,136(11): 1413-1422. [16] GOTO Y,EBISAWA T,LU X. Local buckling restraining behavior of thin-walled circular CFT columns under seismic loads[J]. Journal of Structural Engineering,2014,140(5): 04013105. [17] SHEN Y,FREDDI F,LI J. Experimental and numerical investigations of the seismic behavior of socket and hybrid connections for PCFT bridge columns[J]. Engineering Structures,2022,253: 113833. [18] MAX T. STEPHENS,DAWN E. Lehmanb. Charles W. Roeder. Seismic performance modeling of concrete-filled steel tube bridges: Tools and case study[J]. Engineering Structures,2018,165: 88-105. [19] PIRAS S,PALERMO A, SAIIDI M. State-of-the-Art of Posttensioned Rocking Bridge Substructure Systems[J]. Journal of Bridge Engineering,2022,27(3): 03122001. [20] MARRIOTT D,PAMPANIN S,PALERMO A. Quasi-static and pseudo-dynamic testing of unbonded post-tensioned rocking bridge piers with external replaceable dissipaters. Earthquake Engineering & Structural Dynamics. 2009; 38(3): 331–54. [21] TRONO W,JEN G,PANAGIOTOU M,et al. Seismic response of a damage-resistant recentering posttensioned-HYFRC bridge column[J] Bridge Engineering. 2015; 20(7): 04014096. [22] HASSANLI R,YOUSSF O,MILLS JE. Seismic performance of precast post-tensioned segmental FRP-confined and unconfined crumb rubber concrete[J]. Journal of Composites for Construction. 2017; 21(4): 04017006. [23] GUERRINI G. Seismic performance of precast concrete dual-shell steel columns for accelerated bridge construction[D]. University of California at San Diego,La Jolla,CA,2014. [24] GUERRINI G,RESTREPO J I,VERVELIDIS A,et al. Self-centering precast concrete dual-steel-shell columns for accelerated bridge construction: seismic performance,analysis,and design[R]. PEER Report 2015/13. [25] ARPIT N,JOSÉ I R. Low seismic damage columns for accelerated bridge construction[R]. PEER Report 2020/10. [26] 韩林海. 钢管混凝土结构-理论与实践(第三版)[M]. 科学出版社,2007. HAN Linhai. Concrete filled steel tubular structures:theory and practice(third edition)[M]. Science Press,2007. [27] DENAVIT M D,HAJJAR J F. Nonlinear seismic analysis of circular concrete-filled steel tube members and frames[R]. NSEL Technical Report. Report Number NSEL-023; 2010. [28] PALERMO A,PAMPANIN S,MARRIOTT D. Design, modeling, and experimental response of seismic resistant bridge piers with post-tensioned dissipating connections[J]. Journal of Structural Engineering,2007,133 (11): 1648–1661. [29] PAMPANIN S,PRIESTLEY M J N,SRITHARAN S. Analytical modelling of the seismic behavior of precast concrete frames designed with ductile connections[J]. Journal of Earthquake Engineering,2001,5(3): 329-367. [30] 刘雪山,李建中,张宏杰等. 不同构造下的预制拼装钢管混凝土桥墩抗震性能试验[J]. 中国公路学报,2021,34(11): 116-128. LIU Xueshan,LI Jianzhong,ZHANG Hongjie,et al. Experimental analysis of seismic performance of precast assembled concrete filled steel tube piers under different structures[J]. China Journal of Highway and Transport,2021,34(11): 116-128. [31] JTG/T 2231-01-2020 公路桥梁抗震设计规范[S]. 人民交通出版社,2020. JTG/T 2231-01-2020 Specifications for seismic design of highway bridges[S]. China Communication Press,2020.

PDF(4348 KB)

Accesses

Citation

Detail

段落导航
相关文章

/