基于热流固耦合的液膜密封动态追随性分析

宋勇1,于博1, 2,郝木明2,王陈寅2,李天照2,任宝杰3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 214-222.

PDF(4533 KB)
PDF(4533 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 214-222.
论文

基于热流固耦合的液膜密封动态追随性分析

  • 宋勇1,于博1, 2,郝木明2,王陈寅2,李天照2,任宝杰3
作者信息 +

Dynamic tracking performance analysis of liquid-film seal based on thermal-fluid-structure coupling

  • SONG Yong1, YU Bo1, 2, HAO Muming2, WANG Chenyin2, LI Tianzhao2, REN Baojie3
Author information +
文章历史 +

摘要

为研究热流固耦合下液膜密封动态追随特性,基于小扰动法及热动力润滑理论,考虑非补偿环轴向振动、角向偏摆,建立补偿环三自由度运动方程,对比并分析纯流场和热流固耦合模型下力学元件参数、操作工况参数、结构参数对动态追随性的影响。结果表明:在热流固耦合模型下求解的液膜密封扰动量略小于纯流场模型下求解的扰动量;增加激励振幅,弹簧刚度和O型圈阻尼均会导致扰动增大,动态追随性变差;减小转速、增加介质压力会导致动态特性系数增加,有利于提高动态追随性;减少槽数会提高动态追随性,且在槽数给定时,槽深17μm,槽坝比0.8,螺旋角22°的结构参数设定会得到更好的动态追随性。

Abstract

To thoroughly examine the dynamic tracking features of liquid film seals in the context of thermo-fluid-solid coupling, the small perturbation method and thermo-hydrodynamic lubrication theory are utilized. Accounting for non-compensated ring axial vibration and angular yaw, a motion equation with three degrees of freedom is formulated for the compensation ring. The influence of mechanical component parameters, operating condition parameters, and structural parameters on dynamic tracking is methodically compared and analyzed within both pure flow field and thermo-fluid-solid coupling models. The observations reveal that the disturbance values for liquid film seals computed under the thermo-fluid-solid coupling model are slightly less compared to those in the pure flow field model. Increasing excitation amplitude, spring stiffness, and O-ring damping contributes to heightened disturbance, consequently diminishing dynamic tracking effectiveness. In contrast, decreasing the rotational speed and elevating the medium pressure lead to an augmentation of dynamic characteristic coefficients, thereby enhancing dynamic tracking capabilities. Streamlining the number of grooves bolsters dynamic tracking, and with a fixed groove count, adopting structural parameters featuring a groove depth of 17μm, a groove dam ratio of 0.8, and a helix angle of 22° yields optimal dynamic tracking performance.

关键词

液膜密封 / 振动特性 / 小扰动法 / 热流固耦合

Key words

liquid film seal / vibration characteristics / small disturbance method / thermal-fluid-solid coupling

引用本文

导出引用
宋勇1,于博1, 2,郝木明2,王陈寅2,李天照2,任宝杰3. 基于热流固耦合的液膜密封动态追随性分析[J]. 振动与冲击, 2024, 43(7): 214-222
SONG Yong1, YU Bo1, 2, HAO Muming2, WANG Chenyin2, LI Tianzhao2, REN Baojie3. Dynamic tracking performance analysis of liquid-film seal based on thermal-fluid-structure coupling[J]. Journal of Vibration and Shock, 2024, 43(7): 214-222

参考文献

[1] Ma C H, Bai S X, Peng X D. Thermo-hydrodynamic characteristics of spiral groove gas face seals operating at low pressure[J]. Tribology International, 2016, 95: 44-54. [2] 黄伟峰, 潘晓波, 王子羲, 等. 上游泵送机械密封热-流固耦合建模与性能分析[J]. 清华大学学报(自然科学版), 2020, 60(07): 603-610. Huang Weifeng, Pan Xiaobo, Wang Zixi, et al. Thermal-fluid-solid Coupled Analyses of Upstream Mechanical Seals in Pumps[J]. J Tsinghua Univ(Sci & Technol), 2020, 60(07): 603-610. [3] 闫玉涛, 魏荣, 胡广阳, 等. 考虑热流固多物理场耦合的圆周密封特性[J]. 航空动力学报, 2020, 35(02): 305-317. Yan Yutao, Wei Rong, Hu Guangyang, et al. Circumferential Seal Characteristics with Thermal-fluid-structure Multi-physics Field Coupling[j]. Journal of Aerospace Power, 2020, 35(02): 305-317. [4] Etsion I, Dan Y. An analysis of mechanical face seal vibrations[J]. Journal of Lubrication Technology, 1981, 103(3): 428-433. [5] 孟祥铠, 江莹莹, 赵文静, 等. 考虑空化效应的螺旋槽机械密封液膜动力学特性研究[J]. 摩擦学学报, 2019, 39(02): 171-180. Meng Xiangkai, Wang Yingying, ZhaO Wenjing, et al. Fluid Film Dynamic Characteristics of Spiral-Grooved Mechanical Seals with Cavitation Effect[J]. Tribology, 2019, 39(02): 171-180. [6] Wang Y L, Wu J H, Xu L S, et al. Static and dynamic characteristics of a Rayleigh-steps mechanical seal with reverse steps. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. December 2021. [7] Wang Y L, Wu J H, Xu L S. Influence of power-law fluid on transient performance of liquid film seal based on the time-dependent non-Newtonian dynamic Reynolds equation[J]. Tribology International, 2021, 159(4):106984. [8] Blasiak S, Zahorulko A V. A parametric and dynamic analysis of non-contacting gas face seals with modified surfaces[J]. Tribology International, 2016, 94: 126-137. [9] Lee S C, Zheng X L. Analyses of both steady behavior and dynamic tracking of non-contacting spiral-grooved gas face seals[J]. Computers & Fluids, 2013, 88: 326-333. [10] 陈源, 彭旭东, 江锦波, 等. 密封环挠性安装形式对干气密封动态追随性的影响[J]. 摩擦学学报, 2017, 37(2): 139-147. Cheng Yuan, Peng Xudong, Jiang Jinbo, et al. The Influence of Flexibly Mounted Ways of Seal Rings on Dynamic Tracking of Dry Gas Seal[J]. Tribology, 2017, 37(2): 139-147. [11] 张树强, 王良, 陈杰, 等. 弹簧和密封圈刚度和阻尼对气体端面密封追随性的影响研究[J]. 振动与冲击, 2018, 37(3): 54-60. Zhang Shuqiang, Wang Liang, Chen Jie, et al. Research on the Influence of Spring and Sealing Ring Stiffness and Damping on the Followability of Gas Seals [J]. Vibration and Shock, 2018, 37(3): 54-60. [12] 于博, 韩磊, 孙鑫晖, 等. 计入JFO边界条件的波度机械密封动态特性分析[J]. 润滑与密封, 2021, 46(12): 58-64. Yu Bo, Han Lei, Sun Xinhui, et al. Dynamic Characteristics Analysis of Waviness Mechanical Seal Considering JFO Boundary Conditions [J]. Lubrication and Sealing, 2021, 46(12): 58-64. [13] Ma C H, Bai S X, Peng X D. Thermoelastohydrodynamic characteristics of T-grooves gas face seals[J]. International Journal of Heat and Mass Transfer, 2016, 102: 277-286. [14] Qiu Y, Khonsari M M. On the prediction of cavitation in dimples using a mass-conservative algorithm[J]. Journal of Tribology, 2009, 131(4): 041702(1)-041702(11). [15] Ma C B, Duan Y J, Yu B, et al. The comprehensive effect of surface texture and roughness under hydrodynamic and mixed lubrication conditions [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231(10): 1307-1319. [16] Tournerie B , Danos J C , J FrêNe. Three-Dimensional Modeling of THD Lubrication in Face Seals[J]. Journal of Tribology, 2001, 123(1):548-555.

PDF(4533 KB)

Accesses

Citation

Detail

段落导航
相关文章

/