地铁循环荷载下粘土污染圆砾的大型动三轴试验及动力特性研究

马少坤1,2,田发派1,黄海均1,张加兵1,2,段智博3,龚健1,2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 245-254.

PDF(4707 KB)
PDF(4707 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 245-254.
论文

地铁循环荷载下粘土污染圆砾的大型动三轴试验及动力特性研究

  • 马少坤1,2,田发派1,黄海均1,张加兵1,2,段智博3,龚健1,2
作者信息 +

Large-scale dynamic triaxial tests and dynamic characteristics of clay contaminated round gravel under subway cyclic load

  • MA Shaokun1,2, TIAN Fapai1, HUANG Haijun1, ZHANG Jiabing1,2, DUAN Zhibo3, GONG Jian1,2
Author information +
文章历史 +

摘要

为揭示地铁循环荷载作用下受粘土污染圆砾的长期动力特性,利用GDS大型三轴循环试验系统,开展了一系列饱和不排水动三轴试验,分析了不同围压及动应力幅值下粘土污染水平(VCI)对圆砾长期动力特性的影响。试验结果表明:随着VCI的增加,试样的累积塑性应变呈先增后减的趋势,污染粘土由润滑作用转变为填充作用,围压为100 kPa时,界限VCI=30%,围压为200 kPa、300 kPa时,界限VCI=20%;VCI对浅埋地铁隧道(σ3=100 kPa)影响较大,威胁行车安全,而对深埋地铁隧道(σ3=200 kPa、300 kPa)影响较小,地铁运行相对安全;随VCI的增加,试样的弹性应变和动孔压比先增大后减小,而回弹模量则先减小后增大,但三者的变化趋势均随围压的降低及动应力幅值的增大愈发明显。研究成果可为地铁路基结构设计及其工后沉降预估提供参考。

Abstract

In order to investigate the long-term dynamic properties of clay-fouled round under cyclic subway loading, a series of saturated undrained dynamic triaxial tests were carried out by utilizing the GDS large-scale triaxial cyclic test system. The influence of clay fouling level (VCI) on round gravel's long-term dynamic properties under different confining pressures and dynamic stress amplitudes was analyzed. The experimental results show that with the increase of VCI, the cumulative plastic strain of the specimen shows a tendency of increasing and then decreasing, and the fouled clay changes from lubrication to filling. When the confining pressure is 100 kPa, the cut-off VCI is 30%, and when the confining pressure is 200 kPa and 300 kPa, the cut-off VCI is 20%. VCI has a large impact on shallow buried subway tunnels (σ3= 100 kPa), which threatens the safety of traveling, while it has a small impact on deep buried subway tunnels (σ3= 200 kPa, 300 kPa), which makes the subway operation relatively safe. With the increase of VCI, the elastic strain and dynamic pore-pressure ratio of the specimens first increased and then decreased, while the resilience modulus first decreased and then increased. However, the trends of all three changes become more obvious with the decrease of confining pressure and the increase of dynamic stress amplitude. Generally, the research results can be used as a reference for designing subway roadbed structures and their post-construction settlement predictions.

关键词

循环荷载 / 圆砾 / 粘土污染水平 / 动力特性

Key words

cyclic loading / round gravel / clay fouling level / dynamic characteristics

引用本文

导出引用
马少坤1,2,田发派1,黄海均1,张加兵1,2,段智博3,龚健1,2. 地铁循环荷载下粘土污染圆砾的大型动三轴试验及动力特性研究[J]. 振动与冲击, 2024, 43(7): 245-254
MA Shaokun1,2, TIAN Fapai1, HUANG Haijun1, ZHANG Jiabing1,2, DUAN Zhibo3, GONG Jian1,2. Large-scale dynamic triaxial tests and dynamic characteristics of clay contaminated round gravel under subway cyclic load[J]. Journal of Vibration and Shock, 2024, 43(7): 245-254

参考文献

[1] Indraratna B, Tennakoon N, Nimbalkar S, et al. Behaviour of clay-fouled ballast under drained triaxial testing [J]. Geotechnique, 2013, 63(5): 410-419. [2] Tennakoon N, Indraratna B, Nimbalkar S, et al. Application of bounding surface plasticity concept for clay-fouled ballast under drained loading [J]. Computers and Geotechnics, 2015, 70: 96-105. [3] Chen WB, Feng WQ, Yin JH. Effects of water content on resilient modulus of a granular material with high fines content [J]. Construction and Building Materials, 2020, 236: 117542. [4] Su Y, Cui YJ, Dupla JC, et al. Effect of water content on resilient modulus and damping ratio of fine/coarse soil mixtures with varying coarse grain contents [J]. Transportation Geotechnics, 2021, 26: 100452. [5]王海波,吴琪,杨平.细粒含量对饱和砂类土液化强度的影响[J].岩土力学,2018,39(08): 2771-2779. Wang Haibo, Wu Qi, Yang Ping. Effect of fines content on liquefaction resistance of saturated sandy soils [J]. Rock and Soil Mechanics, 2018, 39 (08): 2771-2779. [6]张晓军.压实条件及细粒含量对压实土动强度的影响研究[J].振动与冲击,2019,38(14):125-130. Zhang Xiaojun. Influence of compaction conditions and fines content on the dynamic strength of compacted soil [J]. Journal of Vibration and Shock, 2019, 38 (14): 125-130. [7] Liu ZY, Xue JF, Ye JZ. The effects of unloading on drained cyclic behaviour of Sydney sand [J]. Acta Geotechnica, 2021, 16(9): 2791-2804. [8] Zhang Q, Cao ZG, Cai YQ, et al. Experimental investigation into the cyclic behaviour of geogrid enhanced base layer aggregate through large-diameter triaxial tests [J]. Transportation Geotechnics, 2022, 37: 100851. [9]吴琪,陈国兴,周正龙,等.细粒含量对细粒-砂粒-砾粒混合料动强度的影响[J].岩土工程学报,2017,39(06):1038-1047. Wu Qi, Chen Guoxing, Zhou Zhenglong, et al. Influences of fines content on cyclic resistance ratio of fines-sand-gravel mixtures [J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (06): 1038-1047. [10]王家全,祝梦柯,林志南,等.多级变幅动载下含细粒砾砂动力参数试验分析[J].地下空间与工程学报,2022,18(06):1933-1941. Wang Jiaquan, Zhu Mengke, Lin Zhinan, et al. Experimental Analysis on Dynamic Parameters of Fine-Grained Sand under Multi-Level Variable Amplitude Dynamic Loading [J]. Chinese Journal of Underground Space and Engineering, 2022-18 (06): 1933-1941. [11]杨志浩,岳祖润,叶朝良,等.重载铁路基床污染级配碎石临界动应力及动强度特性研究[J].铁道学报,2022,44(07):145-153. Yang Zhihao, Yue Zurun, Ye Chaoliang, et al. Study on Critical Dynamic Stress and Dynamic Strength Properties of Fouled Graded Macadam in Heavy Haul Railway Subgrade Bed [J]. Journal of the China Railway Society, 2022, 44 (07): 145-153. [12] Khogali W, Mohamed E. Novel approach for characterization of unbound materials[J]. Transportation Research Record Journal of the Transportation Research Board, 2004, 1874(1874), 38-46. [13] Budiono DS, McSweeney T, Dhanasekar A, et al. The effect of coal dust fouling on the cyclic behaviour of railtrack ballast [C]. Bochum: CRC Press, 2004, 627-632. [14] Duong TV, Tang AM, Cui YJ, et al. Effects of fines and water contents on the mechanical behavior of interlayer soil in ancient railway sub-structure [J]. Soils and Foundations, 2013, 53(6): 868-878. [15] Tennakoon N, Indraratna B. Behaviour of clay-fouled ballast under cyclic loading [J]. Geotechnique, 2014, 64(6): 502-506. [16] Ebrahimi A, Tinjum JM, Edil TB. Deformational behavior of fouled railway ballast [J]. Canadian Geotechnical Journal, 2015, 52(3): 344-355. [17] Cao ZG, Chen JY, Cai YQ, et al. Long-term behavior of clay-fouled unbound granular materials subjected to cyclic loadings with different frequencies [J]. Engineering Geology, 2018, 243: 118-127. [18]马少坤,王博,刘莹,等.南宁地铁区域饱和圆砾土大型动三轴试验研究[J].岩土工程学报,2019, 41(01): 168-174. Ma Shaokun, Wang Bo, Liu Ying, et al. Large-scale dynamic triaxial tests on saturated gravel soil in Nanning metro area [J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (01): 168-174. [19] TB10102-2010.铁路工程土工试验规程[S].北京:中国铁道出版社,2010. [20] Indraratna B, Ngo T, Rujikiatkamjorn C. Behavior of geogrid-reinforced ballast under various levels of fouling [J]. Geotextiles and Geomembranes, 2011, 29(3): 313-322. [21]陈静,高睿,刘洋泽鹏等.黏土脏污对道砟集料的应力-剪胀关系影响[J].西南交通大学学报,2022,57(06):1201-1207. Chen Jing, Gao Rui, Liu Yang Zepeng, et al. Effect of Clay Contamination on Stress-Dilatancy Relationships of Ballast Aggregate [J]. Journal of Southwest Jiaotong University, 2022, 57 (06): 1201-1207. [22] Ngo N T, Indraratna B, Rujikiatkamjorn C. DEM simulation of the behaviour of geogrid stabilised ballast fouled with coal [J].Computers and Geotechnics, 2014, 55(1): 224-231. [23] Liu ZY, Xue JF, Mei GX. The impact of stress disturbance on undrained cyclic behaviour of a kaolin clay and settlement of tunnels under cyclic loading [J]. Acta Geotechnica, 2021, 16(12): 3947-3961. [24] Yang Q, Tang YQ, Yuan B, et al. Cyclic stress-strain behaviour of soft clay under traffic loading through hollow cylinder apparatus: effect of loading frequency [J]. Road Materials and Pavement Design, 2019, 20(5): 1026-1058. [25] Tang L, Yan MH, Ling XZ, et al. Dynamic behaviours of railway's base course materials subjected to long-term low-level cyclic loading: experimental study and empirical model [J]. Geotechnique, 2017, 67(6): 537-545. [26] Qi S, Cui YJ, Dupla JC, et al. Investigation of the parallel gradation method based on the response of track-bed materials under cyclic loadings [J]. Transportation Geotechnics, 2020, 24: 100360. [27] Duong TV, Cui YJ, Tang AM, et al. Effects of water and fines contents on the resilient modulus of the interlayer soil of railway substructure [J]. Acta Geotechnica, 2016, 11(1): 51-59. [28] Trinh VN, Tang AM, Cui YJ, et al. Mechanical characterisation of the fouled ballast in ancient railway track substructure by large-scale triaxial tests [J]. Soils and Foundations, 2012,52(3):511-523. [29] Indraratna B, Nimbalkar S, Rujikiatkamjorn C. From theory to practice in track geomechanics-Australian perspective for synthetic inclusions [J]. Transportation Geotechnics, 2014, 1(4): 171-187. [30] Wang KY, Zhuang Y. Characterizing the permanent deformation Response-Behavior of subgrade material under cyclic loading based on the shakedown theory [J]. Construction and Building Materials, 2021, 311: 125325. [31] Yoder EJ, Witczak MW. Principles of pavement design[M]. New York: Wiley, 1959. [32] Rollins KM, Evans MD, Diehl NB, et al. Smear modulus and damping relationships for gravels [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(5): 396-405.

PDF(4707 KB)

189

Accesses

0

Citation

Detail

段落导航
相关文章

/