基于迭代增强变分模态提取的滚动轴承复合故障诊断

张家军 1,马萍 1,张海 2,张宏立 1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 255-265.

PDF(3404 KB)
PDF(3404 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 255-265.
论文

基于迭代增强变分模态提取的滚动轴承复合故障诊断

  • 张家军 1,马萍 1,张海 2,张宏立 1
作者信息 +

Composite fault diagnosis of rolling bearing based on iterative enhanced variational mode extraction

  • ZHANG Jiajun1, MA Ping1, ZHANG Hai2, ZHANG Hongli1
Author information +
文章历史 +

摘要

针对变分模态提取对多分量复合故障提取能力不足,且存在中心频率和平衡因子两个超参数优化等问题,提出了一种迭代增强变分模态提取(Iterative enhanced variational mode extraction, IEVME)的滚动轴承复合故障诊断新方法。首先,提出引入中心频率趋势收敛现象优化VME的初始中心频率,使其能自适应寻找合适的初始中心频率进行提取并加入新的收敛准则对信号进行迭代提取的迭代变分模态提取方法(Iterative variational mode extraction, IVME);然后,通过优化IVME的平衡因子得到多个分量信号,再利用图拉普拉斯能量指数选取最优分量进行重构;接着,为全面提取复合故障信号中的主要周期,提出了结合加强运算减去运算的增强最小噪声幅值解卷积(Enhanced minimum noise amplitude deconvolution, EMNAD)方法,以降低噪声并增强相对较弱的周期信号;最后,通过融合平方包络谱实现对滚动轴承的复合故障诊断。将所提方法应用到滚动轴承复合故障诊断中,通过仿真和实例信号验证所提IEVME方法的有效性和鲁棒性,并将所提方法与现有多种方法进行对比,结果表明所提IEVME方法准确性更高,效果更优。

Abstract

To solve the problem of insufficient extraction capacity of variational mode extraction for multi-component composite faults and the existence of two hyperparameter optimizations of center frequency and balance factor, an iterative enhanced variational mode extraction (IEVM) method for composite fault diagnosis of rolling bearing was proposed. Firstly, an iterative variational mode extraction method (IVME) was proposed to optimize the initial center frequency of VME by introducing the convergence phenomenon of center frequency trend, so that it can find an appropriate initial center frequency to extract and add a new convergence criterion to extract the signal iteratively; Then, a plurality of component signals were obtained by optimizing the balance factor of IVME, and the optimal component was selected for reconstruction by means of the Graph-Laplace energy index; Secondly, in order to extract the main period in the composite fault signal, an enhanced minimum noise amplitude deconvolution (EMNAD) method was proposed, which combines enhanced algorithm subtraction to reduce the noise and enhance the relatively weak periodic signal; Finally, the composite fault diagnosis of rolling bearing was realized by fusion of square envelope spectrum. The proposed method was applied to the composite fault diagnosis of rolling bearing, and the effectiveness and robustness of the proposed IEVME method have been verified by simulation and example signals. The proposed method was compared with the existing multiple methods, and the results show that the proposed IEVME method has higher accuracy and better effect.

关键词

滚动轴承 / 迭代增强变分模态提取 / 增强最小噪声幅值解卷积 / 复合故障诊断

Key words

rolling bearing / iterative enhanced variational mode extraction / enhanced minimum noise amplitude deconvolution / composite fault diagnosis

引用本文

导出引用
张家军 1,马萍 1,张海 2,张宏立 1. 基于迭代增强变分模态提取的滚动轴承复合故障诊断[J]. 振动与冲击, 2024, 43(7): 255-265
ZHANG Jiajun1, MA Ping1, ZHANG Hai2, ZHANG Hongli1. Composite fault diagnosis of rolling bearing based on iterative enhanced variational mode extraction[J]. Journal of Vibration and Shock, 2024, 43(7): 255-265

参考文献

[1] 袁静,姚泽,胡雯玥,等. 滚动轴承复合故障的时频能量聚集谱诊断方法[J]. 振动与冲击,2023, 42(02):285-292+320. Yuan Jing, Yao Ze, Hu Wen-yue, et al. Time-frequency energy aggregation spectrum diagnostic method for composite faults of rolling bearings [J]. Vibration and Shock, 2023, 42(02): 285-292+320. [2] Song Q, Jiang X, Du G, et al. Smart multichannel mode extraction for enhanced bearing fault diagnosis [J]. Mechanical Systems and Signal Processing,2023,189:110107. [3] Ma P, Zhang H, Wang C. Adaptive dynamic mode decomposition and its application in rolling bearing compound fault diagnosis [J]. Structural Health Monitoring, 2023,22(1):398-416. [4] 刘宝华,张穆勇,臧延旭,等. 基于AIF和TT的滚动轴承复合故障诊断[J]. 振动.测试与诊断,2022, 42(06):1206-1211+1249. Liu Bao-hua, Zhang Mu-yong, Zang Yan-xu, et al. Compound fault diagnosis of rolling bearings based on AIF and improved Time-Time transform [J]. Vibration, Testing and Diagnosis, 2022,42 (06): 1206-1211+1249. [5] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences,1998,454(1971):903-995. [6] Tian Z, Li H, Sun J, et al. Degradation feature extraction of the hydraulic pump based on local characteristic-scale decom-position and multi-fractal spectrum [J]. Advances in Mechanical Engineering,2016;8:1–9. [7] SMITH J S. The local mean decomposition and its application to EEG perception data [J]. Journal of the Royal Society Interface,2005,2(5):443-454. [8] 陈鹏,赵小强. 基于优化VMD与改进阈值降噪的滚动轴承早期故障特征提取[J]. 振动与冲击,2021, 40(13):146-153. Chen Peng, Zhao Xiao-qiang. Early fault feature extraction of rolling bearings based on optimized VMD and improved threshold denoising [J]. Vibration and Shock, 2021, 40(13): 146-153. [9] Dragomiretskiy K, Zosso D. Variational mode decomposition [J]. IEEE Transactions on Signal Processing, 2013,62(3): 531-544. [10] 郑义,岳建海,焦静,等. 基于参数优化变分模态分解的滚动轴承故障特征提取方法[J]. 振动与冲击,2021, 40(01):86-94. Zheng Yi, Yue Jian-hai, Jiao Jing, et al. Fault feature extraction method of rolling bearing based on parameter optimized VMD [J]. Vibration and Shock, 2021,40(01):86-94 [11] 吴磊,张新,王家序,等. 基于增强自适应盲解卷积方法的齿轮故障诊断[J]. 振动与冲击,2023, 42(07):123-132. Wu Lei, Zhang Xin, Wang Jia-xu, et al. Gear fault diagnosis based on enhanced adaptive blind deconvolution method [J]. Vibration and Shock, 2023, 42(07): 123-132. [12] 张守京,慎明俊,杨静雯,等. 改进的共振稀疏分解方法及其在滚动轴承复合故障诊断中的应用[J]. 中国机械工程,2022, 33(14):1697-1706. Zhang Shou-jing, Shen Ming-jun, Yang Jing-wen, et al. Improved RSSD and its applications to composite fault diagnosis of rolling bearings [J]. China Mechanical Engineering, 2022, 33(14): 1697-1706. [13] 林云,郭瑜,陈鑫. 参数优化最大二阶循环平稳盲解卷积行星轮轴承故障提取[J]. 振动与冲击,2023, 42(02):321-328. Lin Yun, Guo Yu, Chen Xin. Planet bearing fault extraction based on parameter optimized maximum second-order cyclostationary blind deconvolution [J]. Vibration and Shock, 2023, 42(02): 321-328. [14] Fang B, Hu J, Yang C, et al. Minimum noise amplitude deconvolution and its application in repetitive impact detection [J]. Structural Health Monitoring, 2023,22(3): 1807-1827. [15] Nazari M, Sakhaei S M. Variational mode extraction: A new efficient method to derive respiratory signals from ECG [J]. IEEE Journal of Biomedical and Health Informatics, 2017,22(4):1059-1067. [16] Pang B, Nazari M, Sun Z, et al. An optimized variational mode extraction method for rolling bearing fault diagnosis [J]. Structural Health Monitoring, 2022,21(2):558-570. [17] Wang X, Wang H, Tang G, et al. Initial parameter guided variational mode extraction for damage detection of wind turbine bearing [J]. Structural Health Monitoring,2023, 22(3):1515-1542. [18] 郭远晶,金晓航,魏燕定,等. S变换引导变分模态提取的旋转机械故障诊断方法[J]. 振动工程学报,2022, 35(05): 1289-1298. Guo Yuan-jing, Jin Xiao-hang, Wei Yan-din, et al. Fault diagnosis method of rotating machinery using variational mode extraction guided by S transform [J]. Journal of Vibration Engineering, 2022, 35(05): 1289-1298. [19] Jiang X, Wang J, Shen C, et al. An adaptive and efficient variational mode decomposition and its application for bearing fault diagnosis [J]. Structural Health Monitoring, 2021,20(5):2708-2725. [20] Huang R, Xia J, Zhang B, et al. Compound fault diagnosis for rotating machinery: State-of-the-art, challenges, and opportunities [J]. Journal of Dynamics, Monitoring and Diagnostics,2023,2(1):13-29. [21] Yu M. A novel intrinsic time–scale decomposition–graph signal processing–based characteristic extraction method for rotor–stator rubbing of aeroengine [J]. Journal of Vibration and Control,2022,28(7-8):902-914. [22] Zeng M, Chen Z. SOSO boosting of the K-SVD denoising algorithm for enhancing fault-induced impulse responses of rolling element bearings [J]. IEEE Transactions on Industrial Electronics,2019,67(2):1282-1292. [23] Pang B, Zhang H, Cheng T, et al. Spectral variational mode extraction and its application in fault detection of rolling bearing[J]. Structural Health Monitoring, 2023,22(1):449-471. [24] Yan X, Yan W, Yuen K V, et al. An adaptive variational mode extraction method based on multi-domain and multi-objective optimization for bearing fault diagnosis[J]. Structural Health Monitoring, 2023,22(4):2708-2733. [25] Ye M, Yan X, Chen N, et al. Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network[J]. Applied Acoustics, 2023,202:109143. [26] Wang X, Wang H, Tang G, et al. Initial parameter guided variational mode extraction for damage detection of wind turbine bearing[J]. Structural Health Monitoring,2023,22(3): 1515-1542. [27] 王琇峰,文俊,倪泽行,等. 基于AVMD和二阶FWEO的滚动轴承故障诊断[J]. 振动.测试与诊断, 2023, 43(02):246-253+406. Wang Xiu-feng, Wen Jun, Ni Ze-xing, et al. Fault diagnosis of rolling bearing based on adaptive variational mode decomposition and second‑order frequency‑weighted energy operator [J] Vibration, Testing and Diagnostics, 2023, 43(02):246-253+406 [28] Zhang B, Miao Y, Lin J, et al. Adaptive maximum second-order cyclostationarity blind deconvolution and its application for locomotive bearing fault diagnosis [J]. Mechanical Systems and Signal Processing,2021,158:107736. [29] Cheng Y, Wang S, Chen B, et al. An improved envelope spectrum via candidate fault frequency optimization-gram for bearing fault diagnosis [J]. Journal of Sound and Vibration, 2022,523:116746. [30] 雷亚国,韩天宇,王彪,等. XJTU-SY滚动轴承加速寿命试验数据集解读[J]. 机械工程学报, 2019, 55(16): 1-6. Lei Ya-guo, Han Tian-yu, Wang Biao, et al. XJTU-SY rolling element bearing accelerated life test datasets: A tutorial [J]. Journal of Mechanical Engineering, 2019, 55(16): 1-6. [31] Lessmeier C, Kimotho J K, Zimmer D, et al. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification [C]//PHM Society European Conference.2016,3(1).

PDF(3404 KB)

Accesses

Citation

Detail

段落导航
相关文章

/