面向电磁水声换能器的高静低动型悬架动力学研究

孙士涛,么宇辉,张希,李鸿光

振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 300-307.

PDF(1670 KB)
PDF(1670 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 300-307.
论文

面向电磁水声换能器的高静低动型悬架动力学研究

  • 孙士涛,么宇辉,张希,李鸿光
作者信息 +

Dynamic study of high-static-low-dynamic suspension for electromagnetic underwater acoustic transducers

  • SUN Shitao, YAO Yuhui, ZHANG Xi, LI Hongguang
Author information +
文章历史 +

摘要

针对目前线性悬架无法兼顾电磁水声换能器降低谐振频率与承载较大静水压力的难题,设计引入了高静低动型悬架装置,并分析其对换能器声辐射性能的影响。建立了系统动力学模型和动态特性微分方程组,仿真分析了引入非线性刚度前后换能器系统声源级及谐振频率的变化。研究了输入电压对不同系统谐振频率的影响,探究了不同高静低动系统之间的差异。通过锤击试验测得引入高静低动刚度前后悬架的固有频率和加速度导纳。研究结果表明:相较于原线性悬架,高静低动型悬架在承受相同负载时具备更低的固有频率,低频段内具有更高的加速度。在电磁换能器中引入具有高静低动刚度特性的悬架装置可以获得比原系统更低的谐振频率,使低频区域内的声源级得到提升。

Abstract

To address the problem that the linear suspension cannot balance the reduction of the resonance frequency and the bearing of large hydrostatic pressure for the electromagnetic acoustic transducer, a high-static-low-dynamic suspension device was designed and its influence on the sound radiation performance of the transducer was analyzed. The system dynamics model and the differential equations of dynamic characteristics were established, and the changes of sound source level and resonance frequency of the transducer system before and after introducing nonlinear stiffness were simulated and analyzed, and the influence of input voltage on the resonance frequency of the transducer system was studied. The differences between different high-static-low-dynamic systems are investigated. The natural frequency and acceleration conductor of the suspension device before and after introducing high-static-low-dynamic stiffness were obtained by hammering test. The research results show that compared with the original linear suspension, the high-static-low-dynamic suspension has a lower intrinsic frequency and higher acceleration in the low frequency band when subjected to the same load. The introduction of a suspension device with high-static-low-dynamic stiffness characteristics into the electromagnetic transducer can obtain a lower resonance frequency than the original system, resulting in an improvement of the sound source level in the ultra-low frequency region.

关键词

换能器 / 谐振频率 / 高静低动 / 仿真分析

Key words

transducer / resonant frequency / high-static-low-dynamic / simulation analysis

引用本文

导出引用
孙士涛,么宇辉,张希,李鸿光. 面向电磁水声换能器的高静低动型悬架动力学研究[J]. 振动与冲击, 2024, 43(7): 300-307
SUN Shitao, YAO Yuhui, ZHANG Xi, LI Hongguang. Dynamic study of high-static-low-dynamic suspension for electromagnetic underwater acoustic transducers[J]. Journal of Vibration and Shock, 2024, 43(7): 300-307

参考文献

[1] DECARPIGNY J N, HAMONIC B, WILSON O B. The design of low frequency underwater acoustic projectors: present status and future trends [J]. IEEE Journal of Oceanic Engineering, 1991, 16(1): 107-122. [2] MOSCA F, MATTE G, SHIMURA T. Low-frequency source for very long-range underwater communication [J]. Journal of the Acoustical Society of America, 2013, 133(1): EL61-EL7. [3] 杜召平, 陈刚, 王达. 国外声呐技术发展综述 [J]. 舰船科学技术, 2019, 41(1): 145-151. DU Zhao-ping, CHEN Gang, WANG Da. Foreign sonar technology development research summary. [J]. Ship Science and Technology, 2019, 41(1): 145-151 [4] 莫喜平. 我国水声换能器技术研究进展与发展机遇 [J]. 中国科学院院刊, 2019, 34(3): 272-282. MO Xiping.Progress and opportunities of underwater transducers in China [J]. Chinese Academy of Sciences, 2019, 34(3):272-282. [5] WALLIN B, CROCKER S, SZELAG J. Implementation of moving magnet actuation in very low frequency underwater acoustic transduction [J]. The Journal of the Acoustical Society of America, 2016, 139: 2198-2189. [6] SIMS C C. High-Fidelity Underwater Sound Transducers [J]. Proceedings of the IRE, 1959, 47(5): 866-871. [7] 桑永杰. 低频宽带水声换能器研究 [D]. 哈尔滨: 哈尔滨工程大学, 2014. [8] 雷云中,王轲,吴九汇. 低频大宽带超结构水声发射换能器研制 [J]. 振动与冲击, 2022, 41(7): 167-173. LEI Yunzhong, WANG Ke, WU Jiuhui. Development of underwater acoustic projector with low frequency, large bandwidth and superstructure [J]. Journal of Vibration and Shock, 2022, 41(7): 167-173. [9] 杨洋, 桑永杰, 刘茂伊, 等. 电动式换能器声源级起伏改善实验研究 [J]. 应用声学, 2023,42(1):100-106. YANG Yang, SANG Yongjie, LIU Maoyi, et al. Experimental research on improving source level fluctuation of moving coil projector [J]. Journal of Applied Acoustics, 2023, 42(1): 100-106 [10] 唐良雨. 双驱动电动换能器电磁场和声-结构耦合场分析 [J]. 应用声学, 2012,31(5):345-351 TANG Liangyu. Analyese of acoustic and electromagnetic fields for the design of a two coil-driven electric transducer [J]. Journal of Applied Acoustics, 2012,31(5):345-351 [11] TIMME R W, YOUNG A M, BLUE J E. Transducer Needs for Low-Frequency Sonar [M]. Power Transducers for Sonics and Ultrasonics.Springer,1991:3-13. [12] 桑永杰, 蓝宇, 刘茂伊. 声腔对电动式换能器工作特性的影响 [J]. 声学学报, 2022, 47(01): 76-84. SANG Yongjie, LAN Yu, LIU Maoyi. The influence of acoustic cavity on operating characteristics of electrodynamic transducer [J]. Acta Acustica, 2022, 47(1): 76-84. [13] 周瑜. 超低频声源研究 [D]. 哈尔滨: 哈尔滨工程大学, 2008. [14] CARRELLA A, BRENNAN M, WATERS T. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic [J]. Journal of sound and vibration, 2007, 301(3-5): 678-689. [15] CARRELLA A, BRENNAN M, WATERS T, et al. On the design of a high-static–low-dynamic stiffness isolator using linear mechanical springs and magnets [J]. Journal of Sound and Vibration, 2008, 315(3): 712-720. [16] HUANG X, LIU X, SUN J, et al. Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: A theoretical and experimental study [J]. Journal of Sound and Vibration, 2014, 333(4): 1132-1148. [17] ZHOU J, WANG X, XU D, et al. Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms [J]. Journal of Sound and Vibration, 2015, 346: 53-69. [18] 韩俊淑, 孙景工, 孟令帅. 一种曲面-弹簧-滚子机构的非线性隔振器特性分析 [J]. 振动与冲击, 2019, 38(3): 170-178. HAN Junshu, SUN Jinggong, MENG Lingshuai. Design and characteristics analysis of a nonlinear vibration isolator using a curved surface-spring-roller mechanism as negative stiffness element [J]. Journal of Vibration and Shock, 2019, 38(3): 170-178. [19] YAO Y, LI H, LI Y, et al.Analytical and experimental investigation of a high-static-low-dynamic stiffness isolator with cam-roller-spring mechanism [J]. International Journal of Mechanical Sciences, 2020, 186: 105888. [20] YAO Y, WANG X, LI H. Design and Analysis of a High-Static-Low-Dynamic Stiffness Isolator Using the Cam-Roller-Spring Mechanism [J]. Journal of Vibration and Acoustics, 2020, 142(2). [21] ZHANG G, LI W, WANG X, et al. Influence of flexible structure vibration on the excitation forces delivered by multiple electrodynamic shakers [J]. Mechanical Systems and Signal Processing, 2022, 169: 108753. [22] 滕舵, 杨虎, 李道江. 水声换能器基础: 第2版. [M]. 西安: 西北工业大学出版社, 2020, 26-34. [23]杨超.小型低频大功率发射换能器设计与实现[D]. 成都: 电子科技大学, 2015.

PDF(1670 KB)

358

Accesses

0

Citation

Detail

段落导航
相关文章

/