功能梯度石墨烯增强多孔复合材料阶梯圆柱壳的振动特性

徐宏达,王宇,徐自强,贾小羽,于晓光

振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 317-326.

PDF(2645 KB)
PDF(2645 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 317-326.
论文

功能梯度石墨烯增强多孔复合材料阶梯圆柱壳的振动特性

  • 徐宏达,王宇,徐自强,贾小羽,于晓光
作者信息 +

Vibration characteristics of functionally graded graphene reinforced porous composite stepped cylindrical shell

  • XU Hongda, WANG Yu, XU Ziqiang, JIA Xiaoyu, YU Xiaoguang
Author information +
文章历史 +

摘要

对功能梯度石墨烯增强多孔复合材料(FG-GPLRPC)阶梯圆柱壳的振动特性进行了研究。首先,采用Halpin-Tsai微观力学模型以及开胞体理论得到FG-GPLRPC阶梯圆柱壳的有效材料属性。其次,基于一阶剪切变形理论和惩罚参数法推导出壳体结构的能量表达式。最后,采用Jacobi-Ritz法建立壳体结构的振动控制方程,并求得结构的无量纲频率,验证了方法的有效性和正确性。结果表明,石墨烯质量分数、孔隙系数和边界弹簧刚度值对振动特性的影响显著,层数对振动特性的影响较小,尺寸参数对振动特性的影响不同,并得到了壳体频率随周向波数先减小后增大的变化规律。

Abstract

The vibrational properties of functionally graded graphene platelet reinforced porous composites (FG-GPLRPC) stepped cylindrical shell were investigated in this study. First, the effective material properties of the FG-GPLRPC stepped cylindrical shell are obtained using the Halpin-Tsai micromechanical model as well as the open-cell body theory. Secondly, the energy expressions of the shell structure are derived based on the first-order shear deformation theory and the penalized parameter method. Finally, the Jacobi-Ritz method is used to establish the vibration control equation of the shell structure and to find the dimensionless frequency of the structure, which verifies the validity and correctness of the method. The results show that the mass fraction of graphene, porosity coefficient and boundary spring stiffness value have significant effects on the vibration characteristics, the number of layers has less effect on the vibration characteristics, the dimensional parameters have different effects on the vibration characteristics, and the variation law of the shell frequency decreases and then increases with the circumferential wave number is obtained.

关键词

石墨烯增强 / 多孔复合材料 / 阶梯圆柱壳 / 一阶剪切变形理论 / Jacobi-Ritz法

Key words

graphene reinforced / porous composites / stepped cylindrical shell / first-order shear deformation theory / Jacobi-Ritz method

引用本文

导出引用
徐宏达,王宇,徐自强,贾小羽,于晓光. 功能梯度石墨烯增强多孔复合材料阶梯圆柱壳的振动特性[J]. 振动与冲击, 2024, 43(7): 317-326
XU Hongda, WANG Yu, XU Ziqiang, JIA Xiaoyu, YU Xiaoguang. Vibration characteristics of functionally graded graphene reinforced porous composite stepped cylindrical shell[J]. Journal of Vibration and Shock, 2024, 43(7): 317-326

参考文献

[1] Akinwande D, Brennan C J, Bunch J S, et al. A review on mechanics and mechanical properties of 2D materials—Graphene and beyond[J]. Extreme Mechanics Letters, 2017, 13: 42-77. [2] Zhao S, Zhao Z, Yang Z, et al. Functionally graded graphene reinforced composite structures: A review[J]. Engineering Structures, 2020, 210: 110339. [3] Dong Y H, Li Y H, Chen D, et al. Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion[J]. Composites Part B: Engineering, 2018, 145: 1-13. [4] 马辉,付强,李坤,樊富友.考虑螺栓连接的吊挂式薄壁柱壳固有特性分析[J].东北大学学报(自然科学版), 2020, 41(05):686-692. MA Hui, Fu Qiang, LI Kun, FAN Fuyou. Analysis of the inherent characteristics of hanging thin-walled column shells considering bolted connections[J]. Journal of Northeastern University (Natural Science Edition), 2020, 41(05):686-692. [5] Wang Q, Qin B, Shi D, et al. A semi-analytical method for vibration analysis of functionally graded carbon nanotube reinforced composite doubly-curved panels and shells of revolution[J]. Composite Structures, 2017, 174: 87-109. [6] Li H, Dong B C, Zhao J, et al. Nonlinear free vibration of functionally graded fiber-reinforced composite hexagon honeycomb sandwich cylindrical shells[J]. Engineering Structures, 2022, 263: 114372. [7] Li H, Liu Y, Zhang H Y, et al. Amplitude-dependent damping characteristics of all-composite sandwich plates with a foam-filled hexagon honeycomb core, Mechanical Systems and Signal Processing, 2023, 186, 109845. [8] Shen H S, Xiang Y, Fan Y, et al. Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments[J]. Composites Part B Engineering, 2018, 136:177-86. [9] Feng C, Kitipornchai S, Yang J. Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Compos B Eng, 2017, 110:132-40. [10] Liu D, Kitipornchai S, Chen W, et al. Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell[J]. Composite Structures, 2018, 189: 560-569. [11] Baghbadorani A A, Kiani Y. Free vibration analysis of functionally graded cylindrical shells reinforced with graphene platelets[J]. Composite Structures, 2021, 276: 114546. [12] Qin Z, Safaei B, Pang X, et al. Traveling wave analysis of rotating functionally graded graphene platelet reinforced nanocomposite cylindrical shells with general boundary conditions[J]. Results in Physics, 2019, 15: 102752. [13] Kitipornchai S, Chen D, Yang J. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets[J]. Materials & Design, 2017, 116: 656-665. [14] Chen D, Yang J, Kitipornchai S. Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams[J]. Composites Science and Technology, 2017, 142: 235-245. [15] Wang Y Q, Ye C, Zu J W. Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets[J]. Aerospace Science and Technology, 2019, 85: 359-370. [16] Yang J, Chen D, Kitipornchai S. Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method[J]. Composite Structures, 2018, 193: 281-294 [17] Dong Y H, Zhu B, Wang Y, et al. Nonlinear free vibration of graded graphene reinforced cylindrical shells: Effects of spinning motion and axial load[J]. Journal of Sound and Vibration, 2018, 437: 79-96. [18] Wang Y Q, Ye C, Zu J W. Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets[J]. Aerospace Science and Technology, 2019, 85: 359-370. [19] Li H, Gao Z, Zhao J, et al. Vibration suppression effect of porous graphene platelet coating on fiber reinforced polymer composite plate with viscoelastic damping boundary conditions resting on viscoelastic foundation[J]. Engineering Structures, 2021, 237: 112167. [20] 李海超, 庞福振, 张航,等. 阶梯厚度圆柱壳自由振动特性分析[J]. 振动工程学报, 2020, 33(6):8. LI Haichao, PANG Fuzhen, ZHANG Hang, et al. Analysis of free vibration characteristics of cylindrical shells with stepped thickness [J] Journal of Vibration Engineering, 2020, 33 (6): 8. [21] Li H, Pang F, Miao X, et al. Jacobi–Ritz method for free vibration analysis of uniform and stepped circular cylindrical shells with arbitrary boundary conditions: A unified formulation[J]. Computers & mathematics with applications, 2019, 77(2): 427-440. [22] Zhang L, Xiang Y. Exact solutions for vibration of stepped circular cylindrical shells[J]. Journal of sound and vibration, 2007, 299(4-5): 948-964. [23] 桂夷斐,马建敏.阶梯圆柱壳在轴向冲击载荷作用下的屈曲计算分析[J].振动与冲击,2019,38(01):200-205+228. GUI Yifei, MA Jianmin. Buckling analysis of stepped cylindrical shells under axial impact load [J]. Journal of vibration and shock, 2019, 38 (01): 200-205+228. [24] Chen M, Xie K, Xu K, et al. Wave based method for free and forced vibration analysis of cylindrical shells with discontinuity in thickness[J]. Journal of Vibration and Acoustics, 2015, 137(5). [25] Li Z, Zhong R, Wang Q, et al. The thermal vibration characteristics of the functionally graded porous stepped cylindrical shell by using characteristic orthogonal polynomials[J]. International Journal of Mechanical Sciences, 2020, 182:105779. [26] Rafiee M A, Rafiee J, Wang Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS nano, 2009, 3(12): 3884-3890. [27] Wicklein M, Thoma K. Numerical investigations of the elastic and plastic behaviour of an open-cell aluminium foam[J]. Materials Science and Engineering: A, 2005, 397(1-2): 391-399. [28] Bhrawy A H, Taha T M, Machado J A T. A review of operational matrices and spectral techniques for fractional calculus[J]. Nonlinear Dynamics, 2015, 81(3): 1023-1052.

PDF(2645 KB)

303

Accesses

0

Citation

Detail

段落导航
相关文章

/