为探究差异化的构形参数对复合材料波纹梁吸能性能影响,针对多种构形波纹梁,进行动态压溃试验,对试验现象分析及试验数据处理,给出了多种构形波纹梁的载荷-时间曲线和破坏模式。采用有限元软件(ABAQUS)模拟波纹梁的瞬态冲击过程,得到吸能特性参数比吸能(SEA)和平均载荷值等,并与试验结果对比,对比结果验证了数值模型的有效性。通过试验及数值分析结果讨论了波纹构形对波纹梁峰值载荷和吸能能力的影响,对不同构形波纹梁以及增加薄弱环节设计的吸能差异作出评估,为实际工程设计提供参考依据。结果表明,利用等截面剖面杆轴向压缩载荷作用下的临界应力方程将波纹梁梁高/波幅比、波长/波幅比设定在相应关系式时波纹梁结构表现出较为稳定的压溃过程,具有一定的应用价值;波纹腹板圆角R值除了对峰值载荷及平均载荷有影响,对波纹梁破坏模式改变也有一定关系,薄弱圆角r值能比较好的改善峰值载荷大小。
Abstract
In order to explore influence of different configuration parameters on a energy absorption performance of composite corrugated beams, the dynamic collapse tests were carried out for various configurations of corrugated beams, and the load-time curves and failure modes of various configurations of corrugated beams were given by analyzing the test phenomena and processing the test data. The transient impact process of the corrugated beam was simulated by the finite element software (ABAQUS), and the specific energy absorption (SEA) and the average load value were obtained, which were compared with the experimental results to verify the validity of the numerical model. Based on the experimental and numerical analysis results, the influence of the corrugated configuration on the peak load and energy absorption capacity of the corrugated beam is discussed, and the difference of energy absorption between different corrugated beams and the design of adding weak links is evaluated, which provides a reference for practical engineering design.The results indicate that when the critical stress equation of the corrugated beam under axial compressive load is used to set the height/amplitude ratio and wavelength/amplitude ratio of the corrugated beam in the corresponding relationship, the corrugated beam structure exhibits a relatively stable crushing process, which has certain application value;The R value of the corrugated web fillet not only affects the peak load and average load, but also has a certain relationship with the change of the failure mode of the corrugated beam. The R value of the weak fillet can better improve the peak load.
关键词
抗坠毁 /
波纹梁 /
波纹腹板 /
数值模拟 /
Hashin /
吸能
{{custom_keyword}} /
Key words
Crashworthiness /
Waved beams /
Waved webs /
Numerical simulation /
Hashin /
energy-absorbing
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MIL-STD-1290A(AV):Light Fixed and Rofary-wing Aircraft Crash Resistance,1988.9.26.
[2] Ulrich D, Pickett A K,Haug E, et al.Crash simulation and verification for metallic,sandwich and laminate structures[R].AD/A212606. 1-18.
[3] A G Mamalis,M Robinson,D E Manolakos,Crashworthy capability of composite material structures,Composite Structures,1997(37):109-134.
[4] H W Song,Z M Wan,Z M Xie,Axial impact behavior and energy absorption efficiency of composite wrapped metal tubes,International Journal of Impact Engineering,2000(24):385-401.
[5] Shanahan D F,Shanahan M O.Injury in U.S. Army helicopter crashes October 1979-September 1985. J. Trauma,1989,29(4):415-423.
[6] 刘瑞同,王鑫伟,荚淑萍等. 碳纤维一环氧树脂波纹梁吸能能力的试验研究[J]. 航空学报,2002,23(1):59-61.
LIU R T,WANG X W,JIA S P, et al.Experimental study on energy absorption of carbon-epoxy waved beams[J].Acta Aeronautica Et Astronautica Sinica, 2002,23(1):59-61(in Chinese).
[7] 倪先平,王永亮, 荚淑萍, 等. 直升机机身下部复合材料典型结构耐坠特性研究[J]. 复合材料学报, 2003, 20(4): 51-57.
NI X P,WANG Y L,JIA S P, et al. Analysis of crash impact behavior of typical composite components of helicopter bottom structure. Acta Materiae Compositae Sinica, 2003, 20(4): 51-57(in Chinese).
[8] 龚俊杰,王鑫伟. 复合材料波纹梁吸能能力的数值模拟,航空学报,2005,26(3):299-302.
GONG J J,WANG X W.Numerical Simulation of Energy Absorption Capability of Composite Waved Beams. Acta Aeronautica Et Astronautica Sinica. 2005,26(3):299-302(in Chinese).
[9] 孟祥吉,燕瑛,罗海波等.复合材料波纹梁冲击试验与数值模拟[M]. 复合材料学报, 2015. 32(1):196-203.
MENG X J,YANG Y,LUO H B,et al.Impact tests and numerical simulation of composite waved-beam[M].Acta Materiae Compositae Sinica, 2015. 32(1):196-203(in Chinese).
[10] 蒋宏勇,任毅如,袁秀良,高宾华.基于非线性渐进损伤模型的复合材料波纹梁耐撞性能研究[J].航空学报. 2017(06).
JIANG H Y,RENG Y R,GAO B H.Research on crashworthiness of composite corrugated beam based on the nonlinear progressive damage model.Acta Aeronautica Et Astronautica Sinica.2017(06)(in Chinese).
[11] 牟浩蕾,邹田春,杜月娟等.复合材料波纹板轴向压溃仿真及机身框段适坠性分析[M]. 复合材料学报, 2015. 35(4):55-62.
MOU H L,ZOU T C,DU Y J,et al.Simulation of Axial Crush Characteristic of Composite Sinusoidal Specimen and Analysis of Crashworthiness of Fuselage Section[M].Acta Materiae Compositae Sinica, 2015. 35(4):55-62(in Chinese).
[12] Sokolinsky V S, Indermuehle K C,Hurtado J A.Numerical simulation of the crushing process of a corrugated composite plate[J]. Composites: Part A,2011,42(9):1119-1126.
[13] Bannerman D C,Kindervater M. Crash impact of simulated composite and aluminum helicopter fuselage elements[J]. Vetica, 1986,10(2):201-211.
[14] Kindervater C M. Energy absorption of composites as an aspect of aircraft structural crash resistance[C].European Conference on Composite Materials. Stuttgart: [s.n.],1990:643.
[15] ZOU T C, MOU H L, FENG Z Y. Research on effects of oblique struts on crashworthiness of composite fuselage sections[J]. Journal of Aircraft,2012,49(6):2059-2063.
[16] 《飞机设计手册》. 航空工业出版社, 2002.
Aircraft Design Manual.Aviation Industry Press,2002(in Chinese).
[17] McGregor C J, Vaziri R, Poursartip A,et al. Simulation of progressive damage development in braided composite tubes under axial compression[J].Composites Part A:Applied Science and Manufacturing,2007,38(11):2247-2259.
[18] Ma J, Yan Y. Quasi-static and dynamic experiment investigations on the crashworthiness response of composite tubes[J].Polymer Composites,2013,34(7):1099-1109.
[19] 罗海波,燕瑛,孟祥吉等. 复合材料结构组件抗坠毁试验与渐进失效分析,北京航空航天大学,2014,40(12):1720-1724.
LUO H B,YANG Y,MENG X J etc. Progressive failure analysis and crashworthiness experiment for composite structural discreteness. Journal of Beijing University of Aeronautics and Astronautics. 2014,40(12):1720-1724 (in Chinese).
[20] Matzenmiller A,Lubliner J,Taylor R L.A constitutive model for anisotropic damage in fiber-composites[J].Mechanics of Materials,1995,20(2):125-152.
[21] ABAQUS 6.13 Analysis use’s manual, Dassault Systemes;2013.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}