小净距隧道先行洞爆破开挖对后行洞围岩稳定性影响研究

李旭哲1,李文杰1,毕志刚2,梁斌1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 42-49.

PDF(3881 KB)
PDF(3881 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 42-49.
论文

小净距隧道先行洞爆破开挖对后行洞围岩稳定性影响研究

  • 李旭哲1,李文杰1,毕志刚2,梁斌1
作者信息 +

Effects of blasting excavation of 1st tunnel of small clear distance tunnels on surrounding rock stability of 2nd tunnel

  • LI Xuzhe1, LI Wenjie1, BI Zhigang2, LIANG Bin1
Author information +
文章历史 +

摘要

为研究小净距隧道先行洞爆破开挖对后行洞围岩稳定性的影响,以浙江义东高速防军隧道项目为工程背景,根据能量衰减规律推导出爆破施工中围岩振速计算公式,采用有限元软件MIDAS GTS NX模拟不同净距条件下围岩振速及应力的变化规律,将围岩振速数值结果与理论值进行对比分析,验证了振速计算公式的准确性。根据振速与应力之间关系,提出保证隧道安全施工的振速阈值。结果表明:(1)后行洞围岩振速大小理论值与模拟值最大相对误差为5.9 %,与现场监测数据最大相对误差为7 %,验证了理论公式的准确性。(2)后行洞隧道振速峰值与先行洞隧道爆破中心距呈负相关,围岩迎爆侧面监测点振速峰值大于背爆侧,2D为防军隧道爆破施工时最小安全净距(D为隧道净距),此时上台阶开挖最大振速峰值约为下台阶的1.2倍。(3)爆破开挖后围岩应力峰值与振速峰值主要集中在拱腰及拱脚附近,随着净距增大,先行洞对后行洞的影响逐渐减弱,最终忽略不计。(4)爆破作用下,围岩应力峰值和振速峰值具有一定线性关系,保证隧道爆破安全施工的振速控制阈值为1.9 cm∙s-1,研究成果可为今后类似小净距隧道工程爆破施工提供借鉴。

Abstract

In order to study the influence of blasting excavation on the stability of surrounding rock in the tunnel with a small clear distance, taking the Yidong high-speed Fangjun tunnel project in Zhejiang province as the engineering background, the calculation formula of surrounding rock vibration velocity during blasting construction was derived according to the law of energy attenuation. The finite element software MIDAS GTS NX was used to simulate the change law of surrounding rock vibration velocity and stress under different clear distance conditions. The numerical results of vibration velocity in surrounding rock are compared with the theoretical values to verify the accuracy of the formula. According to the relation between vibration velocity and stress, the threshold value of vibration velocity is proposed to ensure the safe construction of tunnels. The results show that: (1) The maximum relative error between the theoretical value and the simulated value is 5.9%, and the maximum relative error between the theoretical value and the field monitoring data is 7 %, which verifies the accuracy of the theoretical formula. (2) There is a negative correlation between the peak vibration velocity of the rear tunnel and the distance between the blasting center of the first tunnel, and the peak vibration velocity of the monitoring point on the blasting side of the surrounding rock is greater than that on the back explosion side. 2D is the minimum safe clear distance of the anti-military tunnel during blasting construction (D is the clear distance of the tunnel), at this time, the maximum peak vibration velocity of the excavation of the upper step is about 1.20 times that of the lower step. (3) After blasting excavation, the peak stress and vibration velocity of the surrounding rock are mainly concentrated near the arch waist and arch foot. With the increase in the clear distance, the influence of the advance tunnel on the rear tunnel gradually weakens and is eventually ignored. (4) Under the action of blasting, there is a certain linear relationship between the peak stress of surrounding rock and the peak vibration velocity, and the vibration velocity control threshold to ensure the safe construction of tunnel blasting is 1.9 cm∙s-1. The research results can provide a reference for the blasting construction of similar small clear-distance tunnel projects in the future.

关键词

小净距隧道 / 隧道净距 / 爆破开挖 / 振动响应 / 围岩稳定性 / 数值模拟

Key words

small clear distance tunnel / tunnel clearance / blasting excavation / vibration response; stability of surrounding rock / numerical simulation

引用本文

导出引用
李旭哲1,李文杰1,毕志刚2,梁斌1. 小净距隧道先行洞爆破开挖对后行洞围岩稳定性影响研究[J]. 振动与冲击, 2024, 43(7): 42-49
LI Xuzhe1, LI Wenjie1, BI Zhigang2, LIANG Bin1. Effects of blasting excavation of 1st tunnel of small clear distance tunnels on surrounding rock stability of 2nd tunnel[J]. Journal of Vibration and Shock, 2024, 43(7): 42-49

参考文献

[1] 李小刚, 周先齐, 杨杭澎, 等. 大跨度小净距隧道中夹岩爆破振动控制与损伤判别[J]. 隧道建设(中英文),2022,42(03):406-413. LI Xiaogang, ZHOU Xianqi, YANG Hangpeng, et al. Vibration control and damage determination of blasting in a large-span and small-distance tunnel[J]. Tunnel Construction, 2022, 42 (3): 406-413 [2] Song S G, Li S C, Li L P, et al. Model test study on vibration blasting of large cross-section tunnel with small clearance in horizontal stratified surrounding rock[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2019, 92 : 103013-103013. [3] Shi J J, Guo S C, Zhang W. Expansion of Blast Vibration Attenuation Equations for Deeply Buried Small Clearance Tunnels Based on Dimensional Analysis[J]. Frontiers in Earth Science, 2022, [4] 蒙国往, 张景龙, 吴 波, 等. 循环爆破荷载作用下小净距隧道围岩累积损伤特性研究[J]. 爆破,2021,38(04):52-60+107. MENG Guo-wang, ZHANG Jing-long, WU Bo, et al. Research on Cumulative Damage Characteristics of Surrounding Rock of Small-clear Distance Tunnel under Cyclic Blasting Load[J]. Blasting, 2021,38(04):52-60+107. [5] 于 丽,路 明,王明年,等. 基于改进灰色关联度法对超小净距交叉隧道爆破施工研究[J]. 现代隧道技术,2021,58(S1):336-341. YU Li, LU Ming, WANG Ming-nian, et al. Study on Blasting Construction of Super-closely-spaced Cross Tunnel Based on Improved Grey Relational Analysis[J]. Modern Tunnelling Technology, 2021,58(S1):336-341. [6] 刘闽龙,陈士海,孙 杰,等. 浅埋小净距隧道爆破损伤探测及数值模拟分析[J]. 爆炸与冲击,2021,41(11):149-157. LIU Min-long, CHEN Shi-hai, SUN Jie, et al. Detection and numerical simulation of blasting-induced damage in shallow-buried twin tunnels with small spacing[J]. Explosion and Shock Waves. 2021,41(11):149-157. [7] 梁 琨, 王树欣, 张宪堂, 等. 大跨度小净距隧道爆破振动响应研究[J]. 爆破,2021, 38(02):67-72+159. LIANG Kun, WANG Shuxin, ZHANG Xiantang, et al. Response of Large-span Tunnel to Blasting Vibration of Small Clear Spacing Tunnel Excavation[J]. Blasting,2021,38(02):67-72+159. [8] 刘传阳, 杨年华, 张雷彪, 等. 分岔段超小净距隧道爆破围岩振动衰减特征[J]. 工程爆破, 2021,27(04):124-129. LIU Chuanyang,YANG Nianhua,ZHANG Leibiao,et al. Characteristics of vibration attenuation in wall rock by tunnel blasting at the fork section of super-close-spacing[J]. Engineering Blasting, 2021,27(04):124-129. [9] 曹峰, 凌同华, 李洁, 等. 循环爆破荷载作用下小净距隧道中夹岩的累积损伤特征分析[J]. 振动与冲击, 2018, 37(23):141-148. CAO Feng, LING Tonghua, LI Jie, et al. Cumulative damage feature analysis for shared rock in a neighborhood tunnel under cyclic explosion loading[J]. Journal of Vibration and Shock,2018,37(23):141-148. [10] 袁松, 王峥峥, 周佳媚. 隧道地震动力计算边界取值范围研究[J]. 土木工程学报, 2012, 45(11):166-172. WANG Song, WANG Zhengzheng, ZHOU Jiamei. Study on the model boundary determination in tunnel' s earthquake dynamic analysis[J]. China Civil Engineering Journal, 2012, 45(11):166-172. [11] 贾磊, 解咏平, 李慎奎. 爆破振动对邻近隧道衬砌安全的数值模拟分析[J]. 振动与冲击,2015,34(11):173-177+211. JIA Lei, XIE Yongping, LI Shenkui. Numerical simulation for impact of blasting vibration on nearby tunnel lining safety[J]. Journal of Vibration and Shock,2015,34(11):173-177+211. [12] 张程红. 邻近隧道爆破施工引起的既有隧道衬砌振动速度阈值分析[D].兰州.兰州交通大学,2009. [13] Bao Xian kai et al. Study on the Influence of the Blasting of Preceding Tunnel on the Pre-Penetration Surrounding Rock in Succeeding Tunnel with Small Clear Distance[J]. Shock and Vibration, 2022, 2022. [14] 杨家田. 地铁车站爆破施工对地表建筑物的影响研究[D].重庆.重庆大学,2016. [15] 李洪涛, 卢文波, 舒大强, 等. 爆破地震波的能量衰减规律研究[J]. 岩石力学与工程学报, 2010, 29(S1): 3364-3369. LI Hongtao, LU Wenbo, SHU Daqiang, et al. Study of energy attenuation law of blast-induced seismic wave [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3364-3369. [16] 张少泉, 郭建明. 爆炸地震的能量转换系数计算及其应用[J].地球物理学报,1984(06):537-547. ZHANG Shaoquan, GUO Jianming. On the coupling factor of explosion[J]. Journal of Geophysics, 1984(06): 537-547. [17] 何忠明, 蔡 军, 黄 阜,等. 基于能量法的连拱隧道钻爆施工对围岩损伤影响分析[J]. 中国公路学报,2019,32(09):143-151+182. HE Zhong-ming, CAI Jun, HUANG Fu, et al. Analysis of Influence of Drilling and Blasting Construction on Surrounding Rock Damage of Multi-arch Tunnel Based on Energy Method[J]. China Journal of Highway and Transport,2019,32(09):143-151+182. [18] 陶铁军,汪旭光,池恩安,等.基于能量的爆破地震波衰减公式[J].工程爆破,2015,21(06):78-83. TAO Tiejun, WANG Xuguang, CHI Enan, et al. Attenuation formula of blasting seismic selsmic wave based on energy theory[J]. Engineering Blasting,2015,21(06):78-83. [19] Wang X H, Zhang S R, Wang C, et al. Blast-induced damage and evaluation method of concrete gravity dam subjected to near-field underwater explosion[J]. Engineering Structures, 2020, 209: 109996-109996. [20] GB6722-2014. 爆破安全规程:GB6722-2014[S]. 北京: 中国标准出版社,2015. [21] 贾虎, 徐颖. 岩体开挖爆炸应力损伤范围研究[J]. 岩石力学与工程学报, 2007,26(S1): 3489-3492. JIA Hu,XU Ying. Study on stress damage zone in excavation of rock mass [J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(S1):3489-3492.

PDF(3881 KB)

464

Accesses

0

Citation

Detail

段落导航
相关文章

/