基于车桥耦合理论的斜拉桥拉索动力冲击系数及影响因素分析

李子超1,2,3,黎剑安1,2,3,冯东明1,2,3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 67-74.

PDF(2839 KB)
PDF(2839 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 67-74.
论文

基于车桥耦合理论的斜拉桥拉索动力冲击系数及影响因素分析

  • 李子超1,2,3,黎剑安1,2,3,冯东明1,2,3
作者信息 +

Analysis of dynamic impact coefficients and affecting factors of stay cables in cable-stayed bridges based on vehicle-bridge interaction theory

  • LI Zichao1,2,3, LI Jian’an1,2,3, FENG Dongming1,2,3
Author information +
文章历史 +

摘要

为了分析车辆荷载对斜拉桥拉索产生的冲击效应,以国内某在役斜拉桥和某型五轴重车作为研究对象,通过有限元方法分析不同工况下的拉索动力响应和冲击系数,将计算结果与国家现行规范进行比较,提出了拉索动力冲击系数的建议值。仿真案例考虑了车速(50km/h-120km/h)、路面等级(光滑、A级、B级、C级)以及车辆横向位置对结果的影响。研究结果表明:经有限元分析出的拉索动力冲击系数大于现行规范中的取值;随着路面等级的增加,冲击系数越大;边缘车道上车辆产生的冲击效应大于中间车道的冲击效应;车速变化对不同位置处的拉索动力冲击系数影响并不相同;在相同工况下,短拉索的动力冲击系数较大。研究发现路面等级是影响拉索动力冲击系数的主要因素,因此建议根据路面等级对冲击系数进行取值,具体建议值为:光滑路面取0.08,A级路面取0.15,B级路面取0.25,C级路面取0.4。

Abstract

In order to analyze the impact effect of vehicle loads on the cables of cable-stayed bridges, a domestic in-service cable-stayed bridge and a certain type of five axle load vehicle were studied. The dynamic response and impact coefficient of the cables under different working conditions were analyzed using finite element method. The calculation results were compared with the current national standards, and a recommended value for the dynamic impact coefficient of the cables was proposed. The simulation case considers the impact of vehicle speed (50km/h-120km/h), road level (smooth, Class A, Class B, Class C), and vehicle lateral position on the results. The research results indicate that the dynamic impact coefficient of the cable obtained through finite element analysis is greater than the value in the current specifications. As the road level increases, the impact coefficient increases. The impact effect generated by vehicles on the edge lane is greater than that on the middle lane. The influence of changes in vehicle speed on the dynamic impact coefficient of cables at different positions is not consistent. With the same working conditions, the dynamic impact coefficient of short cables is larger. Research has found that road surface grade is the main factor affecting the dynamic impact coefficient of cables. Therefore, it is recommended to take values for the impact coefficient based on road surface grade. The specific recommended values are: 0.08 for smooth road surface, 0.15 for Class A, 0.25 for Class B, and 0.4 for Class C, respectively.

关键词

车桥耦合系统 / 斜拉桥 / 拉索动力冲击系数 / 路面不平度

Key words

Vehicle-bridge interaction system / Cable-stayed bridge / Cable dynamic impact coefficient / Road roughness

引用本文

导出引用
李子超1,2,3,黎剑安1,2,3,冯东明1,2,3. 基于车桥耦合理论的斜拉桥拉索动力冲击系数及影响因素分析[J]. 振动与冲击, 2024, 43(7): 67-74
LI Zichao1,2,3, LI Jian’an1,2,3, FENG Dongming1,2,3. Analysis of dynamic impact coefficients and affecting factors of stay cables in cable-stayed bridges based on vehicle-bridge interaction theory[J]. Journal of Vibration and Shock, 2024, 43(7): 67-74

参考文献

[1] 陈雅仙. 适用于我国中小跨径简支梁桥的动力冲击系数研究[D]. 湖南:湖南大学,2019. [2] 金大帅,王佐才,唐立恒,等. 基于车桥耦合振动的钢-混组合梁桥疲劳性能研究[J]. 工程与建设,2021, 35(5): 963-967, 983. JIN Da-shuai, WANG Zuo-cai, TANG Li-heng, et al. Study on fatigue performance of steel-concrete composite beam bridge based on vehicle bridgecoupling vibration [J]. Engineering and Construction, 2021, 35(5): 963-967, 983. [3] 贺文宇,丁绪聪,任伟新. 环境激励下移动车辆对桥梁模态参数识别的影响研究[J]. 振动与冲击,2021, 40(3): 48-53. HE Wen-yu, DING Xu-cong, REN Wei-xin. Effects of moving vehicle on bridge modal parametric identification under ambient excitation [J]. Journal of Vibration and Shock, 2021, 40(3): 48-53. [4] 孔烜,张杰,邓露,等. 基于机器视觉的车辆检测与参数识别研究进展[J]. 中国公路学报,2021, 34(4): 13-30. KONG Xuan, ZHANG Jie, DENG Lu, et al. Research advances on vehicle parameter identification based on machine vision [J]. China Journal of Highway and Transport, 2021, 34(4): 13-30. [5] 卜建清,娄国充,罗韶湘. 汽车对桥梁冲击作用分析[J]. 振动与冲击,2007, 26(1): 52-55, 64. BU Jian-qing, LOU Guo-chong, LUO Shao-xiang. Analysis of impact effects of moving vehicles on a continuous bridge [J]. Journal of Vibration and Shock, 2007, 26(1): 52-55, 64. [6] 顾涛. 移动荷载时程动力分析中斜拉桥冲击系数的取用[J]. 四川建筑,2010, 30(1): 137-139, 143. GU Tao, Selection of impact coefficient for cable-stayed bridges in dynamic analysis of moving load time history [J]. Sichuan Architecture, 2010, 30(1): 137-139, 143. [7] JTG D60-2015,公路桥涵设计通用规范[S]. [8] 邓露,王维.公路桥梁动力冲击系数研究进展[J].动力学与控制学报,2016, 14(04): 289-300. DENG Lu, WANG Wei. Research progress on dynamic impact factors of highway bridges [J]. Journal of Dynamics and Control, 2016, 14(04): 289-300. [9] 禹见达.磁流变阻尼器对斜拉桥拉索振动控制的理论与试验研究[D]. 湖南:湖南大学,2007. [10] 戈伟.多塔部分斜拉桥的车桥耦合振动研究[D]. 陕西:长安大学,2021. [11] 王乐业. 考虑车桥耦合振动的斜拉桥拉索疲劳损伤分析[D]. 湖南:长沙理工大学,2017. [12] LI J, FENG D. Fatigue life evaluation of bridge stay cables subject to monitoring traffic and considering road roughness[J]. Engineering Structures, 2023, 293: 116572. [13] Jiang C, Wu C, Cai C.S., et al. Fatigue analysis of stay cables on the long-span bridges under combined action of traffic and wind[J]. Engineering Structures, 2020, 207(Mar.15): 110212.1-110212.11. [14] Deng Y, Li A, Feng D. Fatigue performance investigation for hangers of suspension bridges based on site-specific vehicle loads[J]. Structural Health Monitoring, 2018; 18: 934-48. [15] 肖亚辉,陈思孝,曾永平. 某斜拉桥车辆荷载动力响应分析[J]. 四川建筑,2011,31(5):178-180. XIAO Ya-hui, CHEN Si-xiao, ZENG Yong-ping. Dynamic response analysis of vehicle load on a cable-stayed bridge [J]. Sichuan Architecture, 2011, 31(5): 178-180. [16] 王贵春,陈卫丽. 基于车桥耦合振动的大跨度斜拉桥冲击系数研究[J]. 公路工程,2015(6): 119-124. WANG Gui-chun, CHEN Wei-li. The study on the impact factor of highway cable-stayed bridge with long span on the basis of vehicle-bridge coupled vibration [J]. Highway Engineering, 2015(6): 119-124. [17] 付志方,刘晋华. 公路桥梁冲击系数研究及在斜拉桥中的应用[J]. 河南建材,2018(5): 139-141. FU Zhi-fang, LIU Jin-hua. Research on impact coefficient of highway bridges and its application in cable-stayed bridges [J]. Henan Building Materials, 2018(5): 139-141. [18] 谢旭,朱越峰,申永刚. 大跨度钢索和CFRP索斜拉桥车桥耦合振动研究[J]. 工程力学,2007,24(z1):53-61. XIE Xu, ZHU Yue-feng, SHEN Yong-gang. Study on vibration of long-span cable stayed bridge with steel and CFRP cables due to moving vehicles [J]. Engineering Mechanics, 2007, 24(z1): 53-61. [19] 张为民. 大跨度桥梁冲击系数研究[D]. 上海:同济大学,2009. [20] 李永乐,鲍玉龙,董世赋,等. 大跨度铁路斜拉桥冲击系数的影响因素研究[J]. 振动与冲击,2015(19):138-143. LI Yong-le, BAO Yu-long, DONG Shi-fu, et al. Influencing factors of impacts coefficient for long-span railway cable-stayed bridges [J]. Journal of Vibration and Shock, 2015(19): 138-143. [21] GB/T 7031-2005,机械振动 道路路面谱测量数据报告[S]. [22] 姚成钊. 考虑桥面不平顺影响的公路车辆-桥梁耦合振动分析研究[D]. 湖南:中南大学,2011. [23] JTG D60-2015,公路桥涵设计通用规范[S]. [24] 邓露,王维,孔烜,等. 公路车桥耦合振动理论与应用[M]. 北京:科学出版社,2020. [25] 周勇军,赵煜,贺全海,等. 刚构-连续组合桥梁冲击系数多因素灵敏度分析[J]. 振动与冲击,2012, 31(3): 97-101. ZHOU Yong-jun, ZHAO Yu, HE Quan-hai, et al. Muti-parameters sensitivity analysis of impact factors for rigid-continuous combined bridge [J]. Journal of Vibration and Shock, 2012, 31(3): 97-101.

PDF(2839 KB)

Accesses

Citation

Detail

段落导航
相关文章

/