基于改进麻雀搜索算法的变电构架优化方法

张迎春 1,2,姜岚 1,2,唐波 1,2,陈曦 3,胡辉 4

振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 94-101.

PDF(2502 KB)
PDF(2502 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (7) : 94-101.
论文

基于改进麻雀搜索算法的变电构架优化方法

  • 张迎春 1,2,姜岚 1,2,唐波 1,2,陈曦 3,胡辉 4
作者信息 +

Optimization method of substation structure based on improved sparrow search algorithm

  • ZHANG Yingchun1,2, JIANG Lan1,2, TANG Bo1,2, CHEN Xi3, HU Hui4
Author information +
文章历史 +

摘要

为了解决变电构架设计中的优化问题,采用改进麻雀搜索算法对其进行优化设计。在基本麻雀搜索算法中引入Circle混沌映射,以提高种群的多样性和算法的全局搜索能力;引入萤火虫算法对麻雀搜索算法进行扰动更新,使其易于跳出局部最优。建立尺寸优化的数学模型,采用罚函数法处理约束条件。先将改进后的算法用于典型桁架算例分析,证明其稳定性与有效性,再将其用于变电构架的优化设计,结果表明,采用改进后的麻雀搜索算法能够有效提升变电构架的优化效果。

Abstract

In order to solve the optimization problem in the design of substation structures, the improved sparrow search algorithm was used for its optimization design. The Circle chaotic map was introduced into the basic sparrow search algorithm to improve the diversity of the population and the global search ability of the algorithm. The firefly algorithm was introduced to update the sparrow search algorithm to make it easy to jump out of the local optimum. A mathematical model of size optimization was established, and the penalty function method was utilized to deal with constraints. The improved algorithm was first used to analyze typical truss examples to prove its stability and effectiveness, and then applied to the optimization design of substation frames. The results show that the improved sparrow search algorithm can effectively improve the optimization effect of substation structures.

关键词

变电构架 / 改进麻雀搜索算法 / 离散变量 / 尺寸优化

Key words

substation structure / improved sparrow search algorithm / discrete variable / size optimization

引用本文

导出引用
张迎春 1,2,姜岚 1,2,唐波 1,2,陈曦 3,胡辉 4. 基于改进麻雀搜索算法的变电构架优化方法[J]. 振动与冲击, 2024, 43(7): 94-101
ZHANG Yingchun1,2, JIANG Lan1,2, TANG Bo1,2, CHEN Xi3, HU Hui4. Optimization method of substation structure based on improved sparrow search algorithm[J]. Journal of Vibration and Shock, 2024, 43(7): 94-101

参考文献

[1] 才琪,冯若强. 基于改进双向渐进结构优化法的桁架结构拓扑优化[J]. 建筑结构学报,2022, 43(04): 68-76. CAI Qi, FENG Ruo-qiang. Topology optimization of truss structure based on improved bi-directional evolutionary structural optimization method [J]. Journal of Building Structures, 2022, 43(04):68-76. [2] 李雪平,李栋泓,魏鹏,等. 非平稳随机地震响应约束下的桁架结构形状与拓扑优化[J]. 振动与冲击,2017,36(09):138-145. LI Xue-ping, LI Dong-hong, WEI Peng, et al. Shape and topology optimization of truss structures under non-stationary stochastic seismic excitations [J]. Journal of Vibration and Shock, 2017,36(09):138-145. [3] Zhou M, Rozvany G I N. Dcoc:An optimality criteria method for large systems, part II:algorithm[J]. Structural Optimization, 1993, 6(4):250-262. [4] 吴山,何浩祥,周钰婧. 面向满应力准则的非线性连续结构截面尺寸优化设计理论与分析[J]. 振动与冲击,2021,40(18):250-257. WU Shan, HE Hao-xiang, ZHOU Yu-jing. Section optimum design of continuous structures based on full stress criterion [J]. Journal of Vibration and Shock, 2021,40(18):250-257. [5] 杨丽丽,孔祥龙,李文龙,等. 基于高保真度代理模型的卫星结构优化[J]. 振动与冲击,2021,40(23):208-215+222. YANG Li-li, KONG Xiang-long, LI Wen-long, et al. Satellite structure optimization based on high fidelity surrogate model [J]. Journal of Vibration and Shock, 2021,40(23):208-215+222. [6] 何浩祥,王文涛,吴山. 基于均匀变形和混合智能算法的框架结构抗震优化设计[J]. 振动与冲击,2020,39(04):113-121. HE Hao-xiang, WANG Wen-tao, WU Shan. Aseismic optimization design of a frame structure based on uniform deformation and a hybrid intelligent algorithm [J]. Journal of Vibration and Shock, 2020,39(04):113-121. [7] XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1):22-34. [8] 回立川,陈雪莲,孟嗣博. 多策略混合的改进麻雀搜索算法[J]. 计算机工程与应用,2022, 58(16): 71-83. HUI Li-chuan, CHEN Xue-lian, MENG Si-bo. Improved sparrow search algorithm based on multi-strategy mixing [J]. Computer Engineering and Applications, 2022, 58(16):71-83. [9] 尹德鑫,张达敏,蔡朋宸,等. 改进的麻雀搜索优化算法及其应用[J]. 计算机工程与科学,2022, 44(10): 1844-1851. YIN De-xin, ZHANG Da-min, CAI Peng-chen, et al. Improved sparrows search optimization algorithm and its application [J]. Computer Engineering & Science, 2022, 44(10):1844-1851. [10] 宋立钦,陈文杰,陈伟海,等. 基于混合策略的麻雀搜索算法改进及应用[J]. 北京航空航天大学学报,2022, 1-16. SONG Li-qin, CHEN Wen-jie, CHEN Wei-hai, et al. Improvement and application of hybrid strategy-based spar-row search algorithm [J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 1-16. [11] FENG J H, ZHANG J, ZHU X S, et al. A novel chaos optimization algorithm[J]. Multimedia Tools and Applications, 2017, 76(16):17405-17436. [12] Yang X S. Nature-inspired metaheuristic algorithms[M]. Luniver Press, 2008. [13] 李智勇,黄滔,陈少淼,等. 约束优化进化算法综述[J]. 软件学报,2017, 28(06): 1529-1546. LI Zhi-yong, HUANG Tao, CHEN Shao-miao, et al. Overview of constrained optimization evolutionary algorithms [J]. Journal of Software, 2017, 28(06):1529-1546. [14] 郭惠勇,宋小辉,李正良. 基于改进人工鱼群算法的输电塔塔腿拓扑优化[J]. 振动与冲击,2017,36(04):52-58+87. GUO Hui-yong, SONG Xiao-hui, LI Zheng-liang. Topology optimization of transmission tower legs based on an improved artificial fish-swarm algorithm [J]. Journal of Vibration and Shock, 2017,36(04):52-58+87. [15] 肖阿阳,王本利,金耀初. 约束自适应桁架优化设计方法[J]. 振动与冲击,2015,34(14):188-193+205. XIAO A-yang, WANG Ben-li, JIN Yao-chu. Novel constraint adaptive truss optimization approach [J]. Journal of Vibration and Shock, 2015,34(14):188-193+205. [16] Cao G. Optimized design of framed structures using a genetic algorithm[M]. The University of Memphis, 1996. [17] Camp C V. Design of space trusses using big bang–big crunch optimization[J]. Journal of Structural Engineering, 2007, 133(7):999-1008. [18] Camp C V, Farshchin M. Design of space trusses using modified teaching-learning based optimization[J]. Engineering Structures, 2014, 62:87-97. [19] Wu SJ, Chow PT. Steady-state genetic algorithms for discrete optimization of trusses[J]. Computers&Structures, 1995, 56(6):979-991. [20] Kaveh A, Talatahari S. A particle swarm ant colony optimization for truss structures with discrete variables[J]. J Constr Steel Res, 2009, 65(8-9):1558-1568. [21] Sadollah A, Bahreininejad A, Eskanda H, et al. Mine blast algorithm for optimization of truss structures with discrete variables[J]. Computers and Structures, 2012, 102-103:49-63. [22] DL/T 5457-2012. 变电站建筑结构设计技术规程[S]. 北京: 中国计划出版社, 2012. DL/T 5457-2012. Technical code for the design of substation buildings and structures[J]. Beijing: China Planning Press, 2012.

PDF(2502 KB)

265

Accesses

0

Citation

Detail

段落导航
相关文章

/