耦合边界元法和等效源法的稳健CHIEF法

包英超1,2,向宇1,2,陈洁1,2,石梓玉3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (8) : 109-118.

PDF(2822 KB)
PDF(2822 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (8) : 109-118.
论文

耦合边界元法和等效源法的稳健CHIEF法

  • 包英超1,2,向宇1,2,陈洁1,2,石梓玉3
作者信息 +

A robust CHIEF method for a coupling boundary element method and an equivalent source method

  • BAO Yingchao1,2,XIANG Yu1,2,CHEN Jie1,2,SHI Ziyu3
Author information +
文章历史 +

摘要

针对声学边界元法中解的非唯一性和奇异积分问题,基于(combined helmholtz integral equation formulation,CHIEF)法思想,将常规边界元方程和等效源方程进行联立,并利用两者方程系数矩阵间的耦合等价关系,间接替换计算常规边界元法中的奇异系数矩阵,进而提出一种具有全频域唯一解、高计算精度和高稳定性的耦合CHIEF法。该方法将等效源方程作为补充方程,不仅解决了传统CHIEF法内点补充方程失效的问题,而且矩阵的间接替换计算避免了直接计算奇异积分,显著提高了计算效率和精度。通过声辐射和声散射的典型算例对比了所提方法、常规边界元法、常规Burton-Miller法和等效源法的计算效果。结果表明,所提方法不仅在全波数域内均能获得唯一解,且其计算精度和效率均优于常规边界元法和常规Burton-Miller方法,其系数矩阵条件数远低于等效源法。

Abstract

Aiming at the problem of non-uniqueness of solution and singular integral in acoustic boundary element method, based on the idea of CHIEF method, the conventional boundary element equation and the equivalent source equation are combined, and the coupling equivalent relation between the coefficient matrix of the two equations is used to indirectly replace the singular coefficient matrix in the conventional boundary element method, and then a coupled CHIEF method with unique solution in full frequency domain, high computational accuracy and high stability is proposed. In this method, the equivalent source equation is used as the supplementary equation, which not only solves the failure of the interior point supplementary equation of the traditional CHIEF method, but also avoids the direct calculation of singular integrals by the indirect substitution of matrix, which significantly improves the computational efficiency and accuracy. Through typical examples of acoustic radiation and scattering, the results of the proposed method, conventional boundary element method, conventional Burton-Miller method and equivalent source method are compared. The results show that not only the unique solution can be obtained in the full wavenumber domain, but also the calculation accuracy and efficiency of the proposed method are better than those of the conventional boundary element method and the conventional Burton-Miller method, and the condition number of the coefficient matrix is much lower than that of the equivalent source method.

关键词

边界元法 / 等效源法 / CHIEF法 / Burton-Miller法 / 非唯一性

Key words

boundary element method / equivalent source method / combined helmholtz integral equation formulation method / Burton-Miller method / non-uniqueness

引用本文

导出引用
包英超1,2,向宇1,2,陈洁1,2,石梓玉3. 耦合边界元法和等效源法的稳健CHIEF法[J]. 振动与冲击, 2024, 43(8): 109-118
BAO Yingchao1,2,XIANG Yu1,2,CHEN Jie1,2,SHI Ziyu3. A robust CHIEF method for a coupling boundary element method and an equivalent source method[J]. Journal of Vibration and Shock, 2024, 43(8): 109-118

参考文献

[1] CUNEFARE K A, KOOPMANN G, BROD K. A boundary element method for acoustic radiation valid for all wavenumbers[J]. The Journal of the Acoustical Society of America, 1989, 85(1): 39-48. [2] 陈剑, 程昊, 高煜等. 基于有限元-边界元的声学构形灵敏度分析[J].振动工程学报, 2009, 22(02): 213-217. CHEN Jian, CHENG Hao, GAO Yu, et al. Sensitivity analysis of acoustic configuration based on finite element-boundary element[J]. Journal of Vibration Engineering, 2009, 22(02): 213-217.) [3] 刘林芽, 秦佳良, 雷晓燕等. 基于响应面法的槽形梁结构噪声优化研究[J].振动与冲击, 2018, 37(20) :56-60+80. LIU Linya, QIN Jialiang, LEI Xiaoyan, et al. Noise optimization of a trough beam based on Response surface Method [J]. Journal of Vibration and Shock, 2018, 37(20) :56-60+80. [4] 罗乐, 郑旭, 吕义, 等. 高速列车车轮及轮对的声辐射特性[J]. 吉林大学学报: 工学版, 2016, 46(05): 1464-1470. LUO Le, ZHENG Xu, LV Yi, et al. Acoustic radiation characteristics of wheels and wheelsets of high-speed trains[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(05): 1464-1470. [5] 朱才朝, 秦大同, 李润方. 车身结构振动与车内噪声声场耦合分析与控制[J]. 机械工程学报, 2002, 38(8): 54-58. ZHU Caichao, QIN Datong, LI Runfang. Study on coupling between body structure dynamic and interior noise[J]. Journal of Mechanical Engineering, 2002, 38(8): 54-58. [6] SCHENCK H A. Improved Integral Formulation for Acoustic Radiation Problems[J]. Journal of the Acoustical Society of America, 1968, 44(1): 41-58. [7] BURTON A J, MILLER G F. The application of integral equation methods to the numerical solution of some exterior boundary-value problems[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1971, 323(1553): 201-210. [8] 杨迎春, 周其斗. 运动介质中奇异边界元积分式的精确求解[J]. 振动与冲击, 2011, 30(03): 242-245. YANG Yingchun, ZHOU Qidou. Accurate solution of singular boundary element integrals in moving media[J]. Journal of Vibration and Shock, 2011, 30(03): 242-245. [9] JUN L, BEER G, MEEK J L. Efficient evaluation of integrals of order 1/r 1/r2, 1/r3 using Gauss quadrature[J]. Engineering Analysis, 1985, 2(3): 118-123. [10] NIU Zhongrong, CHENG Changzheng , ZHOU Hanlin, et al. Analytic formulations for calculating nearly singular integrals in two-dimensional BEM[J]. Engineering Analysis with Boundary Elements, 2007, 31(12): 949-964. [11] HU Zongjun, NIU Zhongrong, CHENG Changzheng. A new semi-analytic algorithm of nearly singular integrals on higher order element in 3D potential BEM[J]. Engineering Analysis with Boundary Elements, 2016, 63: 30-39. [12] JOHNSTON B M, JOHNSTON P R, ELLIOTT D. A new method for the numerical evaluation of nearly singular integrals on triangular elements in the 3D boundary element method[J]. Journal of Computational and Applied Mathematics, 2013, 245: 148-161. [13] XIE Guizhong, ZHOU Fenglin, ZHANG Jianming, et al. New variable transformations for evaluating nearly singular integrals in 3D boundary element method[J]. Engineering Analysis with Boundary Elements, 2013, 37(9): 1169-1178. [14] 张耀明, 李小超, Vladimir Sladek, 等. 三维边界元法中高阶单元上的几乎奇异积分[J]. 力学学报, 2013, 45(06): 908-918. ZHANG Yaoming, LI Xiaochao, VLADIMIR Sladek, et al. Almost singular integrals on higher-order elements in the three-dimensional boundary element method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(06): 908-918. [15] 熊辉霞, 苗雨. 边界元近奇异积分计算的改进指数变换方法[J].华中科技大学学报: 自然科学版, 2015, 43(03): 69-73. XIONG Huixia, MIAO Yu. Improved exponential transformation method for the calculation of nearly singular integrals of boundary elements[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2015, 43(03): 69-73. [16] OCHMANN M. Calculation of sound radiation from complex structures using the multipole radiator synthesis with optimized source locations. Proceedings of the Second International Congress on Recent Development in Air-and Structure-Borne and Vibration . Auburn:Auburn University, 1992. [17] OCHMANN M. The source simulation technique for acoustic radiation problems. Acustica, 1995, 81(6): 512~527. [18] 魏应三, 王永生, 沈阳等. 等效源方法的适用性判定及源的优化布置[J].振动与冲击, 2015, 34(21):200-204. WEI Yingsan, WANG Yongsheng, SHEN Yang, et al. Applicability determination of equivalent source Method and Optimal Distribution of Source [J]. Journal of Vibration and Shock, 2015, 34(21):200-204. [19] 石梓玉, 向宇, 陆静, 等. 一种提高声场重构稳定性的射线等效源法[J]. 广西科技大学学报, 2019, 30(03):1-7+21. SHI Ziyu, XIANG Yu, LU Jing, et al. A Ray Equivalent Source Method for Improving the Stability of Sound Field Reconstruction[J]. Journal of Guangxi University of Science and Technology, 2019, 30(03):1-7+21. [20] JEANS R, Mathews I C. The wave superposition method as a robust technique for computing acoustic fields[J]. The Journal of the Acoustical Society of America, 1992, 92(2): 1156-1166. [21] VALDIVIA N P. Advanced equivalent source methodologies for near-field acoustic holography[J]. Journal of Sound and Vibration, 2019, 438: 66-82. [22] ZHENG Changjun, CHEN Haibo, GAO Haifeng, et al. Is the Burton-Miller formulation really free of fictitious eigenfrequencies?[J]. Engineering analysis with boundary elements,2015,5943-51. [23] SONG L, KOOPMANN G H, FAHNLINE J B. Numerical errors associated with the method of superposition for computing acoustic fields[J]. The Journal of the Acoustical Society of America, 1991, 89(6): 2625-2633. [24] XIANG Yu, SHI Ziyu. Full wavenumber high precision combined coupled double boundary element method for solving external acoustic problems[J]. Journal of Sound and Vibration, 2023, 544: 117392. [25] KRISHNASAMY G, SCHMERR L W, RUDOLPHI T J, et al. Hypersingular boundary integral equations: some applications in acoustic and elastic wave scattering[J]. Journal of Applied Mechanics, 1990, 57(2): 404-414. [26] Matsumoto T, Zheng C-J , Harada S , et al. Explicit Evaluation of Hypersingular Boundary Integral Equation for 3-D Helmholtz Equation Discretized with Constant Triangular Element[J]. Journal of Computational Science and Technology, 2010, 4:194-206.

PDF(2822 KB)

436

Accesses

0

Citation

Detail

段落导航
相关文章

/