考虑泄漏和温度效应的黏滞阻尼器性能演变研究

杨孟刚1,曹恺悦1,李新2,胡尚韬 1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (8) : 169-177.

PDF(2746 KB)
PDF(2746 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (8) : 169-177.
论文

考虑泄漏和温度效应的黏滞阻尼器性能演变研究

  • 杨孟刚1,曹恺悦1,李新2,胡尚韬 1
作者信息 +

A study on the damping performance alteration of a fluid viscous damper considering oil leakage and temperature variation effect

  • YANG Menggang1,CAO Kaiyue1,LI Xin2,HU Shangtao1
Author information +
文章历史 +

摘要

黏滞阻尼器作为一种广泛使用的被动减振/震装置,其力学性能在全寿命周期内会发生演变。为探究其力学参数改变模式,揭示其性能演变机理,以油液泄漏和温度效应为主要影响因素开展了试验及仿真研究。首先,对不同漏油程度和环境温度下的黏滞阻尼器分别开展了滞回试验研究和黏温关系分析;其次,对黏滞阻尼器进行了流体动力学仿真,获得其性能演变规律;最后,建立了漏油与温度联合作用下黏滞阻尼器性能演变的力学模型,并对其进行了验证。研究结果表明,油液泄漏将导致滞回圈出现零力平台段,且平台长度与漏油比例成正比;温度升高会导致阻尼系数的减小,从而影响阻尼力峰值;所建立的性能演变模型能够较为精确地反映黏滞阻尼器力学性能的改变。

Abstract

As a widely used passive vibration control device, the fluid viscous damper exhibits mechanical performance alteration throughout the entire service life. To explore the mechanical parameter changing mode and reveal the mechanism of performance alteration, experimental and simulation studies were conducted with oil leakage and temperature effects as the main influencing factors. Firstly, cyclic tests and viscousity-temperature analysis were carried out on viscous dampers under different oil leakage levels and ambient temperatures, respectively. Secondly, fluid dynamics simulations were performed to obtain the alternating tendency of the hysteresis performance. Finally, an analytical model reflecting the performance alteration of viscous dampers under combined oil leakage and temperature effects was established and verified. The results show that oil leakage will cause a “zero-force gap” appearing in the hysteresis loop, of which the length is proportional to the leakage level. Temperature increase will lead to a decrease in the damping coefficient, which affects the peak damping force. The established performance alteration model can accurately reflect the changes in mechanical performance of viscous dampers.

关键词

黏滞阻尼器 / 油液泄漏 / 温度效应 / 性能演变模型 / 滞回试验 / 流体动力学仿真

Key words

viscous damper / oil leakage / temperature effect / performance alteration model / cyclic test;fluid dynamics simulation

引用本文

导出引用
杨孟刚1,曹恺悦1,李新2,胡尚韬 1. 考虑泄漏和温度效应的黏滞阻尼器性能演变研究[J]. 振动与冲击, 2024, 43(8): 169-177
YANG Menggang1,CAO Kaiyue1,LI Xin2,HU Shangtao1. A study on the damping performance alteration of a fluid viscous damper considering oil leakage and temperature variation effect[J]. Journal of Vibration and Shock, 2024, 43(8): 169-177

参考文献

[1] Symans MD, Charney FA, Whittaker AS. Energy dissipation systems for seismic applications: current practice and recent developments[J]. Journal of Structural Engineering, 2008, 134(1): 3-21. [2] Shmerling A, Gerdts M. Short-horizon acceleration-predictive control for reducing lateral seismic inertia forces of inelastic frame structures using semi-active fluid viscous dampers[J]. Computers and Structures, 2023, 281(2023): 107032. [3] 张哲培.新型高阻尼粘滞流体减振件[D]. 北京: 北京林业大学, 2020. ZHANG Zhepei. Research on a new type of viscous fluid damper with high damping[D]. Beijing: Beijing Forestry University, 2020. [4] Konstantinidis D, Makris N, Kelly J M. In-situ condition assessment of seismic fluid dampers: experimental studies and challenges[J]. Meccanica, 2015, 50(2): 323-340. [5] 陈永祁,马良喆.液体粘滞阻尼器应用现状及改进其适用性耐久性的措施方法[J]. 工程抗震与加固改造, 2022, 44(03): 97-106+96. CHEN Yongqi, MA Linagzhe. Application status of liquid viscous dampers and measures to improve their applicability durability[J]. Earthquake Resistant Engineering and Retrofitting, 2022, 44(03): 97-106+96. [6] 陈永祁.工程结构用液体黏滞阻尼器的漏油原因分析[J]. 钢结构, 2008, 23(09): 53-58. CHEN Yongqi. Analysis of reasons of oil leakage of liquid viscous dampers in engineering structures[J]. Steel Structures, 2008, 23(09): 53-58. [7] Wang WL, Yu DS, Xu R. Prediction of the in-service performance of a railway hydraulic damper[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(1): 19–32. [8] Yan X, Shahria Alam M, Shu G, etc. A novel self-centering viscous damper for improving seismic resilience: Its development, experimentation, and system response[J]. Engineering Structures. 2023, 279(2023): 115632. [9] 苏何先, 潘文, 兰香等. 非线性黏滞阻尼器性能试验[J]. 振动与冲击, 2019, 38(20): 61-69+76. SU Hexian, PAN Wen, LAN Xiang, et al. A study on the performance of nonlinear viscous damper testing [J]. Journal of Vibration and Shock. 2019, 38(20): 61-69+76. [10] Francesco G. Seismic bridge response modification due to degradation of viscous dampers performance[D]. San Diego: University of California, 2010. [11] Benzoni G, Amaddeo C, DiCesare A ,et al. A damage identification procedure for bridge structures with energy dissipation devices[R]. SRMD 2007/08, California Department of Transportation. San Diego. [12] 杨孟刚, 胡尚韬, 胡仁康, 等. 新型粘滞-软钢阻尼器组合系统的概念设计与仿真验证[J]. 中南大学学报, 2022, 53(2): 547-559. YANG Menggang, HU Shangtao, HU Renkang, et al. Conceptual design and simulating verification of a novel combined system of viscous and steel dampers[J]. Journal of Central South University (Science and Technology) , 2022, 53(2): 547-559. [13] Hu ST, Meng DL, Hu RK, etc. A Combined Viscous-Steel Damping System (CVSDS) for longitudinal vibration mitigation of a long-span railway suspension bridge[J]. Journal of Earthquake Engineering, 2022, 27(5): 1261-1280. [14] 陈倩,李峰,高双全.聚硼硅氧烷基黏滞阻尼器的力学性能研究[J].振动与冲击, 2021, 40(22): 203-208. CHEN Qian, LI Feng, GAO Shuangquan. Mechanical properties of a polyborosiloxane-based viscous damper[J]. Journal of Vibration and Shock, 2021, 40(22): 203-208. [15] 普静狄. 黏滞阻尼器力学性能检测方法研究[D].昆明理工大学, 2019. PU Jingdi. Research on Mechanical Properties Testing Method of Viscous Damper[D]. Kunming University of Science and Technology, 2019. [16] Kim YG, Cho KH, Kim UK. Optimum design of propulsion shafting system considering characteristics of a viscous damper applied with high-viscosity silicon oil[J]. Journal of the Korean Society of Marine Engineering, 2017,41(3): 202-208. [17] Esfandiyari R, Nejad SM, Marnani JA, etc. Seismic behavior of structural and non-structural elements in RC building with bypass viscous dampers[J]. Steel and Composite Structures, 2020, 34(04): 487-497. [18] Lak H, Zahrai SM. Self-heating of viscous dampers under short- & long-duration loads: Experimental observations and numerical simulations[J]. Structures, 2023(48): 275-287. [19] Guo JWW, Danie Y, Montgomery M ,et al. Thermal-Mechanical Model for Predicting the Wind and Seismic Response of Viscoelastic Dampers[J].Journal of Engineering Mechanics, 2016, 142(10): 04016067. [20] Hu ST, Yang MG, Meng DL ,et al. Damping performance of the degraded fluid viscous damper due to oil leakage[J]. Structures, 2023, 48(2023): 1609-1619. [21] 潘克非.粘滞阻尼器的仿真分析及性能研究[D].天津: 河北工业大学, 2016. PAN Kefei. Simulation Analysis and Performance Study on Viscous Dampers[D]. Tianjin: Hebei University of Technology, 2016. [22] 中华人民共和国交通运输行业标准. 桥梁用黏滞阻尼器(JT/T 926-2014)[S]. 北京:人民交通出版社,2014. Transportation Standards of the People's Republic of China. Viscous damper of bridge (JT/T 926-2014)[S]. Beijing: China Communications Press,2014.

PDF(2746 KB)

279

Accesses

0

Citation

Detail

段落导航
相关文章

/