Currently, the generation mechanism and influencing factors of the structure-acoustic coupling resonance phenomenon in the realm of high-speed trains have not been thoroughly examined. Furthermore, the corresponding optimization design based on the structure-acoustic theory needs to be further developed. Based on the principles of modal and mass equivalence, this study establishes a finite element model for the head car of Electric Multiple Units (EMU). The modal analysis of the structural, acoustic, and structure-acoustic coupling systems is performed where the coupling influence of internal and external sound fields is taken into account. The results of the finite element analysis show that the modal frequencies of the structure conform to the relevant design standards. The acoustic frequency at a certain order closely aligns with the structural one, providing a reference for the subsequent coupling resonance optimization. The variation of the modal parameters demonstrates the necessity of considering the structure-acoustic coupling. Finally, based on the modal analysis results, two optimization designs are implemented for the head car: the first one aims to lighten the weight with adjusting the thicknesses of various areas, adhering to the constraint of the frequency of the first-order vertical bending structural mode; the second seeks to mitigate the effects of coupling resonance where a multi-objective optimization model is formulated aiming at maximizing the frequency difference between the structural and acoustic modes and minimizing the vehicle mass.
YU Yang1,2, CAO Qijun2, LIU Chunyan1, CHEN Bingzhi2, YU Chunyang1.
Structure-acoustic coupling modal analysis and multi-objective optimization of an EMU head car[J]. Journal of Vibration and Shock, 2024, 43(8): 238-247
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 宫岛,马梦林,邓海,等. 动车组车辆地板振动问题及其优化[J]. 同济大学学报(自然科学版),2017,45(08):1174-1182.
GONG Dao,MA Menglin,DENG Hai,et al. Vibration issue and its optimization of the floor structure in electric multiple unit trains[J]. Journal of Tongji University(Natural Science),2017,45(08):1174-1182.
[2] 宫岛,周劲松,孙文静,等. 高速列车车下设备模态匹配及试验研究[J]. 铁道学报,2014,36(10):13-20.
GONG Dao,ZHOU Jinsong,SUN Wenjing,et al. Modal matching between suspended equipment and car body of a high-speed railway vehicle and in-situ experiment[J]. Journal of the China Railway Society,2014,36(10):13-20.
[3] 王鹏,陈恩利,惠美玲,等. 高速动车组车体模态特性分析[J]. 振动.测试与诊断,2019,39(06):1305-1310+1366.
WANG Peng,CHEN Enli,HUI Meiling,et al. Modal characteristics analysis for car body of high-speed electric multiple units[J]. Journal of Vibration,Measurement & Diagnosis,2019,39(06):1305-1310+1366.
[4] 尤泰文,周劲松,宫岛,等. 高速动车组地板局部振动控制研究[J]. 机械工程学报,2021,57(04):140-147.
YOU Taiwen,ZHOU Jinsong,GONG Dao,et al. Research on local vibration control of high-speed EMU floor[J]. Journal of Mechanical Engineering,2021,57(04):140-147.
[5] 于金朋,张卫华,孙帮成,等. 高速车体结构参数对车体模态频率的影响分析[J]. 铁道学报,2015,37(09):32-37.
YU Jinpeng,ZHANG Weihua,SUN Bangcheng,et al. Analysis on effect of structure parameters of high-speed car body on modal frequencies[J]. Journal of the China Railway Society,2015,37(09):32-37.
[6] 刘秋生,钱平,李章国,等. 高速列车室内结构噪声分析[J]. 北京交通大学学报,2013,37(01):166-171.
LIU Qiusheng,QIAN Ping,LI Zhangguo,et al. Analysis of high speed trains’ interior structure noise[J]. Journal of Beijing Jiaotong University,2013,37(01):166-171.
[7] 孙强,张捷,肖新标,等. 低温环境下高速列车车内噪声问题及控制方案[J]. 振动.测试与诊断,2018,38(06):1217-1222+1296.
SUN Qiang,ZHANG Jie,XIAO Xinbiao,et al. Interior noise issues and noise control measures of high-speed train in low temperature[J]. Journal of Vibration,Measurement & Diagnosis,2018,38(06):1217-1222+1296.
[8] 张捷,肖新标,韩健,等. 高速列车车内客室端部噪声分布特性与声学模态分析[J]. 机械工程学报,2014,50(12):97-103.
ZHANG Jie,XIAO Xinbiao,HAN Jian,et al. Characteristics of noise distribution at the ends of the coach and acoustic modal analysis of high-speed train[J]. Journal of Mechanical Engineering,2014,50(12):97-103.
[9] 杨志康. 基于铝合金型材的高速列车声学特性理论分析与研究[D]. 哈尔滨:哈尔滨工业大学,2010.
[10] 徐凯,李跃明. 高速列车车厢结构声-振耦合响应数值分析[J]. 计算机辅助工程,2011,20(03):42-48+63.
XU Kai,LI Yueming. Numerical analysis on acoustic-vibration coupling response of high speed train carriage structure[J]. Computer Aided Engineering,2011,20(03):42-48+63.
[11] 刘太祥,龚兴龙,宗路航,等. 高速列车车体结构振动和车内声学特性分析[J]. 噪声与振动控制,2013,33(03):101-105+141.
LIU Taixiang,GONG Xinglong,ZONG Luhang,et al. Analysis of structural vibration and internal acoustical characteristics of high-speed passenger train[J]. Noise and Vibration Control,2013,33(03):101-105+141.
[12] 闵祥斗,左言言,庄婷. 高速列车车内噪声预测及分析[J]. 科学技术与工程,2014,14(05):305-308.
MIN Xiangdou,ZUO Yanyan,ZHUANG Ting. Prediction and analysis of the interior noise of high-speed train[J]. Science Technology and Engineering,2014,14(05):305-308.
[13] 尤泰文,周劲松,任利惠,等. 车辆整备状态车体垂弯频率优化方法研究[J]. 振动与冲击,2017,36(08):86-91+131.
YOU Taiwen,ZHOU Jinsong,REN Lihui,et al. Optimal design of modal frequencies for railway vehicle car-bodies[J]. Journal of Vibration and Shock,2017,36(08):86-91+131.
[14] 张军,张晓林,方吉. 动车组车体模态灵敏度及优化设计研究[J]. 机械工程学报,2018, 54(12): 93-101.
ZHANG Jun,ZHANG Xiaolin,FANG Ji. Research on modal sensitivity and optimization design for car body of the EMU[J]. Journal of Mechanical Engineering,2018,54(12):93-101.
[15] Pan J. The effect of fluid–structural coupling on sound waves in an enclosure—Experimental part[J]. Journal of the Acoustical Society of America,1990,87(2):708-717.
[16] 王园,张建润,顾伟,等. 不同参数下封闭矩形声腔的结构-声耦合特性分析[J]. 东南大学学报(自然科学版),2013,43(03):503-508.
WANG Yuan,ZHANG Jianrun,GU Wei,et al. Analysis of structural-acoustic coupling characteristics of rectangular enclosure with different parameters[J]. Journal of Southeast University(Natural Science Edition),2013,43(03):503-508.
[17] 林天然,李震. 统计能量分析方法及应用综述[J]. 振动与冲击,2021,40(13):222-238.
LIN Tianran,LI Zhen. Overview of statistical energy analysis and its applications[J]. Journal of Vibration and Shock,2021,40(13):222-238.
[18] Louisell W H. Coupled mode and parametric electronics[M]. New York:Wiley,1960.
[19] Lyon R H. Power Flow between Linearly Coupled Oscillators[J]. The Journal of the Acoustical Society of America,2005,34(5):623-639.
[20] 朱凯,马心坦,徐维维,等. 基于模态贡献量的驾驶室振动噪声控制[J]. 农业装备与车辆工程,2020,58(08):12-15.
ZHU Kai,MA Xintan,XU Weiwei,et al. Cab Vibration and Noise Control Based on Modal Contribution[J]. Agricultural Equipment & Vehicle Engineering,2020,58(08):12-15.
[21] 龚京风,宣领宽,周健,等. 结构声耦合对膨胀腔水消声器声学性能的影响[J]. 哈尔滨工业大学学报,2018,50(10):189-193.
GONG Jingfeng,XUAN Lingkuan,ZHOU Jian,et al. Effects of acoustic solid interaction on acoustic characteristics of water expansion chamber muffler[J]. Journal of Harbin Institute of Technology,2018,50(10):189-193.
[22] 艾延廷,王昌旭,郭晓玲. 燃烧室结构-声耦合特性研究[J]. 中国机械工程,2014,25(15):2008-2012.
AI Yanting,WANG Changxu,GUO Xiaoling,et al. Vibro-acoustic Coupling Analysis of Combustion Chamber[J]. China Mechanical Engineering,2014,25(15):2008-2012.
[23] 张义波. 基于声固耦合模型的商用车驾驶室结构噪声分析与控制[D]. 长沙:湖南大学,2013.
[24] Filippi P. Theoretifcal acoustics and numerical techniques[M]. Vienna:Springer,1983.
[25] Kim S H,Lee J M. A practical method for noise reduction in a vehicle passenger compartment[J]. Journal of Vibration and Acoustics,1998,120:199-205.
[26] 王勖成. 有限单元法[M]. 北京:清华大学出版社,2003.
[27] Lyon R H. Theory and Application of Statistical Energy Analysis[M]. Boston:Butterworth-Heinemann,1995.
[28] Bot A L. Foundation of Statistical Energy Analysis in Vibroacoustics[M]. Oxford:Oxford University Press,2015.
[29] 宋士轲. 中空挤压铝型材的等效模型研究[D]. 北京:北京交通大学,2014.
[30] 周海涛. 动车组头车振动噪声计算分析[D]. 北京:北京交通大学,2016.
[31] 张寅河,李新康,赵红伟. 铝合金型材的等效简化计算[J]. 现代商贸工业,2018,39(08):193-194.
ZHANG Yinhe,LI Xinkang,ZHAO Hongwei. Simplified equivalent calculation of aluminum alloy profiles[J]. Modern Business Trade Industry,2018,39(08):193-194.
[32] 李仁秋. 车体振动模态对疲劳强度的影响分析[D]. 南昌:华东交通大学,2019.
[33] 200km/h及以上速度级铁道车辆强度设计及试验鉴定暂行规定[S]. 北京:中华人民共和国铁道部,2001.
[34] 高云凯,冯海星,马芳武,等. 基于PolyMAX的声固耦合模态试验研究[J]. 振动与冲击,2013,32(02):158-163.
GAO Yunkai,FENG Haixing,MA Fangwu,et al. Acoustic-structure coupled modal test based on PolyMAX[J]. Journal of Vibration and Shock,2013,32(02):158-163.
[35] 赵海波,王秀明,王东,等. 完全匹配层吸收边界在孔隙介质弹性波模拟中的应用[J]. 地球物理学报,2007,(02):581-591.
ZHAO Haibo,WANG Xiuming,WANG Dong,et al. Applications of the boundary absorption using a perfectly matched layer for elastic wave simulation in poroelastic media[J]. Chinese Journal of Geophysics,2007,(02):581-591.
[36] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics,1994,114(2):185-200.
[37] Yao L,Wu F,Wu G. Numerical study of exterior acoustic problems using a novel finite element-least square point interpolation method with perfectly matched layer[J]. Engineering Analysis with Boundary Elements,2019,102:87-96.
[38] 邓兆祥,高书娜. 结构声腔耦合系统的振型耦合特性分析及应用[J]. 吉林大学学报(工学版),2012,42(05):1120-1126.
DENG Zhaoxiang,GAO Shuna. Analysis and application of mode shape coupling characteristics of structural sound cavity coupled system[J]. Journal of Jilin University(Engineering and Technology Edition),2012,42(05):1120-1126.