地震波斜入射下水平成层覆盖层地基波动输入研究

王飞1,2,宋志强2,刘云贺2,李闯2,李正贵1,胡安奎1,田庆3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (8) : 248-256.

PDF(1865 KB)
PDF(1865 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (8) : 248-256.
论文

地震波斜入射下水平成层覆盖层地基波动输入研究

  • 王飞1,2,宋志强2,刘云贺2,李闯2,李正贵1,胡安奎1,田庆3
作者信息 +

Wave input for foundation with horizontal layered overburden under seismic wave oblique incidence

  • WANG Fei1,2, SONG Zhiqiang2, LIU Yunhe2, LI Chuang2, LI Zhenggui1, HU Ankui1, TIAN Qing3
Author information +
文章历史 +

摘要

覆盖层具有土体动力非线性和结构成层特征,地震波斜入射下覆盖层地基自由场计算难度增大、人工边界吸能能力受到限制,制约了地震波动输入精度和应用。本文以水平成层覆盖层为研究对象,引入势函数理论,构建了地震波斜入射下顶层幅值矩阵与任意层幅值矩阵之间的动态传递关系,获得土体时域应变;基于二维应变状态理论,采用等效线性化法反映土体动力非线性,建立了地震波斜入射下非线性水平成层覆盖层地基自由场解析计算方法。利用作者发展的非线性黏弹性人工边界单元模拟远域辐射阻尼效应,近场波动分析中边界单元参数随内层土体单元动剪应变变化,边界单元吸能能力达到最优。结合解析自由场转换得到的等效输入荷载,建立了适用于地震波斜入射下非线性水平成层覆盖层地基地震波动输入方法。该方法能够依据深部斜入射波和地表地震动实现覆盖层地基波动输入,依据地表地震动实现波动输入是避免了通过基底地震动正演自由场等过程。研究了弹性水平双层和非线性水平多层覆盖层地基地震响应,结果表明:波动输入计算获得位移和应力均与解析解有较高拟合度,计算精度高,可为水平成层覆盖层地基上土石坝地震响应研究提供基础。

Abstract

The overburden has the characteristics of soil dynamic nonlinearity and structural layering, which increases the difficulty of free field calculation of foundation with overburden under seismic wave oblique incidence and affects the energy absorption capacity of artificial boundary. They restrict the accuracy and application of seismic wave input. The horizontal layered overburden is taken as the research object, the potential function theory is introduced, the dynamic transitive relation between the amplitude matrix of the top layer and the amplitude matrix of any layer is constructed under seismic wave oblique incidence, and the time domain strain of soil is calculated. Based on the two-dimensional strain state theory, the equivalent linearization method is used to reflect the dynamic nonlinearity of soil, the analytical calculation method for the free field of foundation with nonlinear horizontal layered overburden under seismic wave oblique incidence is established. Then, the nonlinear viscoelasticity artificial boundary element developed by the authors is used to simulate the radiation damping effect of the overburden. In near-field wave analysis, the boundary element parameters change with the dynamic shear strain of the inner soil element, the boundary element has the optimal energy absorption ability. Finally, combined with the equivalent input load obtained from the analytical free field, a seismic wave input method suitable for the foundation with nonlinear horizontal layered overburden under seismic wave oblique incidence is established. This method can achieve wave input for the overburden layer foundation based on the oblique incident waves at deep and surface ground motion. The implementation of wave input based on surface ground motion avoids the process of forward modeling free field through base ground motion. The seismic responses of foundations with elastic horizontal double layers and nonlinear horizontal multiple layers overburden are studied. The results show that the displacements and stresses obtained by wave input have a high degree of fit with the analytical solutions, and the calculation accuracy is high, it can provide a basis for the study of seismic response of embankment dam on the foundation with horizontal layered overburden.

关键词

水平成层覆盖层 / 土体非线性 / 地震波斜入射 / 自由场 / 波动输入

Key words

horizontal layered overburden / soil nonlinearity / seismic wave oblique incidence / free field / wave input

引用本文

导出引用
王飞1,2,宋志强2,刘云贺2,李闯2,李正贵1,胡安奎1,田庆3. 地震波斜入射下水平成层覆盖层地基波动输入研究[J]. 振动与冲击, 2024, 43(8): 248-256
WANG Fei1,2, SONG Zhiqiang2, LIU Yunhe2, LI Chuang2, LI Zhenggui1, HU Ankui1, TIAN Qing3. Wave input for foundation with horizontal layered overburden under seismic wave oblique incidence[J]. Journal of Vibration and Shock, 2024, 43(8): 248-256

参考文献

[1] 邹德高,余翔,余挺,等. 深厚覆盖层上高土石坝动力稳定分析[J]. 水电与抽水蓄能,2020,6(1):22-27. Zou De-gao, Yu Xiang, Yu Ting, et al. Study on the dynamic stability analysis method for high earth built on deep overburden [J]. Hydropower and Pumped Storage, 2020, 6(1): 22-27. [2] 余挺,邵磊. 含软弱土层的深厚河床覆盖层坝基动力特性研究[J]. 岩土力学,2020,41(1):267-277. Yu Ting, Shao Lei. Study on dynamic characteristics of deep river bed cover with soft soil layer[J]. Rock and Soil Mechanics, 2020, 41(1): 267-277. [3] 余翔,孔宪京,邹德高,等. 覆盖层上土石坝非线性动力响应分析的地震波动输入方法[J]. 岩土力学,2018,39(05):1858-1866+1876. Yu Xiang, Kong Xian-jing, Zou De-gao, et al. Seismic wave input method for nonlinear dynamic analysis of earth dam built on overburden[J]. Rock and Soil Mechanics, 2018, 39(05): 1858-1866+1876. [4] 王翔南,张向韬,董威信,等. 深厚覆盖层上心墙堆石坝强震动力响应分析[J]. 地震工程学报,2015,37(02):349-354. Wang Xiang-nan, Zhang Xiang-tao, Dong Wei-xin, et al. Dynamic behavior analysis of a core wall rockfill dam sited on deep overburden layers under strong earthquake loading[J]. China Earthquake Engineering Journal, 2015, 37(02): 349-354. [5] 冯蕊,何蕴龙. 超深覆盖层上沥青混凝土心墙堆石坝防渗系统抗震安全性[J]. 武汉大学学报(工学版),2016,49(01):32-38. Feng Rui, He Yun-long. Seismic response analysis of seepage control system of asphalt concrete core rockfill dam on thick overburden layer[J]. Engineering Journal of Wuhan University, 2016, 49(01): 32-38. [6] Clough R W. Non-linear mechanisms in the seismic response of arch dams[C]// Proceedings of the international research conference earthquake engineering, Skopje, Yugoslavia, 1980, 669–684. [7] Zhang C H, Pan J W, Wang J T. Influence of seismic input mechanisms and radiation damping on arch dam response. Soil Dynamics and Earthquake Engineering, 2009, 29: 1282-1293. [8] 孔宪京,周晨光,邹德高,等. 高土石坝-地基动力相互作用的影响研究[J]. 水利学报,2019,50(12):1417-1432. Kong Xian-jing, Zhou Chen-guang, Zou De-gao, et al. Influence of the dynamic interaction between high rockfill dam and foundation[J]. Journal of Hydraulic Engineering, 2019, 50(12): 1417-1432. [9] 刘晶波,吕彦东. 结构-地基动力相互作用问题分析的一种直接方法[J]. 土木工程学报,1998,31(3):55 -64. Liu Jing-bo, Lv Yan-dong. A direct method for analysis of dynamic soil-structure interaction[J]. China Civil Engineering Journal, 1998, 31(3): 55 -64. [10] 李明超,张佳文,张梦溪,等. 地震波斜入射下混凝土重力坝的塑性损伤响应分析[J]. 水利学报,2019,50(11): 1326-1338+1349. Li Ming-chao, Zhang Jia-wen, Zhang Meng-xi, et al. Plastic damage response analysis of concrete gravity dam due to obliquely incident seismic waves[J]. Journal of Hydraulic Engineering, 2019, 50(11): 1326-1338+1349. [11] Song Z Q, Wang F, Li Y L, et al. Nonlinear seismic responses of the powerhouse of a hydropower station under near-fault plane P-wave oblique incidence. Engineering Structures, 2019, 199: 109613. [12] 魏匡民,陈生水,李国英,等. 地震动波动输入方法在高土石坝动力分析中的应用研究[J]. 三峡大学学报(自然科学版),2019,41(01):17-23. Wei Kuang-min, Chen Sheng-shui, Li Guo-ying, et al. Application of earthquake wave motion input method to high earth-rock dam dynamic analysis[J]. Journal of China Three Gorges University (Natural Sciences), 2019, 41(01): 17-23. [13] 杨正权,赵剑明,刘小生,等. 超深厚覆盖层上土石坝动力分析边界处理方法研究[J]. 土木工程学报,2016,49(S2):138-143. Yang Zheng-quan, Zhao Jian-ming, Liu Xiao-sheng, et al. Study on boundary processing method for dynamic analysis of earth-rockfill dam on super-deep overburden layer[J]. China Civil Engineering Journal, 2016, 49(S2): 138-143. [14] 杨正权,刘小生,汪小刚,等. 深厚覆盖层上土石坝动力分析黏弹性边界处理方法[J]. 中国水利水电科学研究院学报,2017,15(03):200-207+212. Yang Zheng-quan, Liu Xiao-sheng, Wang Xiao-gang, et al. Visco-elastic boundary processing method for dynamic analysis of earth-rock filldam on deep overburden layer[J]. Joumal of China Institute Water Resource and Hydropower Research, 2017, 15(03): 200-207+212. [15] Zou D G, Sui Y, Chen K. Plastic damage analysis of pile foundation of nuclear power plants under beyond-design basis earthquake excitation[J]. Soil Dynamics and Earthquake Engineering, 2020, 136:106179. [16] Wang F, Song Z Q, Liu Y H, et al. Seismic wave input method for high earth dams considering the transmission amplification effect of the bedrock–overburden interface[J]. Computers and Geotechnics, 2021,130:103927. [17] Zienkiewicz O C, Bicanic N, Shen F Q. Earthquake input definition and the trasmitting boundary conditions[M]. Springer Vienna, 1989. [18] 李闯,宋志强,王飞,等. 地震动空间差异对沥青混凝土心墙土石坝-覆盖层地基系统响应影响研究[J]. 振动与冲击, 2022, 41(19): 37-47. Li Chuang, Song Zhi-qiang, Wang Fei, et al. Effects of spatial difference of ground motion on seismic response of asphalt concrete core wall rockfill dam-overburden foundation system[J]. Journal of Vibration and Shock, 2022, 41(19): 37-47. [19] 刘晶波,王艳. 成层半空间出平面自由波场的一维化时域算法[J]. 力学学报, 2006,(02):219-225. Liu Jing-bo, Wang Yan. A 1-D time-domain method for for 2-D wave motion in elastic layered half-space by antiplane wave oblique incidence[J] Chinese Journal of Theoretical and Applied Mechanics, 2006, (02): 219-225. [20] Feldgun V R, Karinski Y S, Yankelevsky D Z, et al. A new analytical approach to reconstruct the acceleration time history at the bedrock base from the free surface signal records[J]. Soil Dynamics and Earthquake Engineering, 2016,85:19-30. [21] Zhao W S, Chen W Z, Yang D S, et al. Earthquake input mechanism for time-domain analysis of tunnels in layered round subjected to obliquely incident P- and SV-waves[J]. Engineering Structures, 2019, 181: 374-386. [22] 郭婷婷,陈龙伟,吴晓阳,等. 等效线性化方法计算深厚土层地震反应的可靠性研究[J]. 振动与冲击, 2023, 42(18): 172-179. Guo Ting-ting, Chen Long-wei, Wu Xiao-yang, et al. Reliability of the seismic response analysis for deep soil sites using equivalent linear methods[J]. Journal of Vibration and Shock, 2023, 42(18): 172-179. [23] Liu J B, Wang Y. A 1D time-domain method for in-plane wave motions in a layered half-space[J]. Acta Mechanica Sinica, 2007,23(6):673–80. [24] Zhang W Y, Taciroglu E. 3D time-domain nonlinear analysis of soil-structure systems subjected to obliquely incident SV waves in layered soil media[J]. Earthquake Engineering & Structural Dynamics, 2021, 50:2156–2173. [25] Li P, Song E X. A viscous-spring transmitting boundary for cylindrical wave propagation in saturated poroelastic media[J]. Soil Dynamics and Earthquake Engineering, 2015, 65:269-283. [26] Zhao M, Yin H Q, Du X L, et al. 1D finite element artificial boundary method for layered half space site response from obliquely incident earthquake[J]. Earthquake and Structures, 2015. 9(1):173-194. [27] Yan L Q, Haidera A, Li P, et al. A numerical study on the transverse seismic response of lined circular tunnels under obliquely incident asynchronous P and SV waves[J]. Tunnelling and Underground Space Technology, 2020, 97: 103235. [28] 沈珠江,徐刚. 堆石料的动力变形特性[J]. 水利水运科学研究,1996,(02):143–208. Shen Zhu-jiang, Xu Gang. Deformation behavior of rock materials under cyclic loading[J]. Hydro-Science and Engineering, 1996, (02): 143–208. [29] 王笃国,赵成刚. 地震波斜入射时二维成层介质自由场求解的等效线性化方法[J]. 岩土工程学报. 2016,38(03):554-561. Wang Du-guo, Zhao Cheng-gang. Two-dimensional equivalent linear seismic analysis of free field in layered half-space due to oblique incidence[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(03): 554-561. [30] 刘晶波,杜义欣,闫秋实. 粘弹性人工边界及地震动输入在通用有限元软件中的实现[C]//第三届全国防震减灾工程学术研讨会论文集,江苏:南京,2007. Liu Jing-bo, Du Yi-xin, Yan Qiu-shi. Implementation of viscous-spring artificial boundaries and ground motion input in general finite eement software[C]// Proceedings of the third national academic conference on earthquake preparedness and disaster reduction, Jiangsu: Nanjing, 2007.

PDF(1865 KB)

Accesses

Citation

Detail

段落导航
相关文章

/