诱导轮对高速液氧泵空化流场影响研究

窦唯1,蒋文山1,李超群2,高永新2,姚程2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (8) : 280-286.

PDF(1459 KB)
PDF(1459 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (8) : 280-286.
论文

诱导轮对高速液氧泵空化流场影响研究

  • 窦唯1,蒋文山1,李超群2,高永新2,姚程2
作者信息 +

Effect of an inducer on cavitation flow field of a high-speed liquid-oxygen-pump

  • DOU Wei1, JIANG Wenshan1, LI Chaoqun2, GAO Yongxin2, YAO Cheng2
Author information +
文章历史 +

摘要

高抗空化诱导轮可以改善液氧泵的空化特性,提高大推力火箭的可靠性。本文基于计算流体力学方法,建立了高速液氧泵的流动仿真模型,通过三组试验工况验证了模型准确性,研究了诱导轮叶片数对液氧泵性能和空化特性的影响。结果表明,使用诱导轮可以减小离心轮空化面积,代偿离心轮的汽蚀,提高液氧泵扬程;在入口流量和出口压力不变的条件下,增加诱导轮叶片数,液氧泵的效率增加,扬程降低,离心轮空化面积增加,诱导轮代偿离心轮汽蚀能力削弱。综合考虑液氧泵性能参数和空化特性,三叶片诱导轮能够满足大推力液体火箭的高可靠性要求。

Abstract

High anti-cavitation inducer improves the cavitation characteristics of the liquid-oxygen-pump and enhances the reliability of heavy-lift rockets. Based on the computational fluid dynamics method, a geometry of the high-speed liquid-oxygen-pump is established to simulate its flow field. The accuracy of numerical model is validated with three test conditions. Effects of inducer-blade number on the performance and cavitation characteristics of the liquid-oxygen-pump are investigated in the present work. It is found that implementing inducer compensates for the cavitation in the centrifugal wheel by reducing the cavitation area and improves the pumping head of the liquid-oxygen-pump. When the inflow mass flow rate and the outflow pressure keeps constant, increasing the inducer-blade number enhances the liquid-oxygen-pump efficiency, but reduces the pumping head. Meanwhile, the ability of compensating cavitation weakens where the cavitation area increases in the centrifugal wheel. Considering the performance and cavitation characteristics of the pump, the inducer with three-blades satisfies the high reliability requirement for the heavy-lift rockets.

关键词

高速液氧泵 / 诱导轮 / 空化特性 / 数值模拟

Key words

High-speed liquid-oxygen-pump / Inducer / Cavitation characteristic / Numerical simulation

引用本文

导出引用
窦唯1,蒋文山1,李超群2,高永新2,姚程2. 诱导轮对高速液氧泵空化流场影响研究[J]. 振动与冲击, 2024, 43(8): 280-286
DOU Wei1, JIANG Wenshan1, LI Chaoqun2, GAO Yongxin2, YAO Cheng2. Effect of an inducer on cavitation flow field of a high-speed liquid-oxygen-pump[J]. Journal of Vibration and Shock, 2024, 43(8): 280-286

参考文献

[1] 程效锐,符丽,包文瑞.等螺距诱导轮的螺距变化对离心泵汽蚀性能的影响[J].兰州理工大学学报,2018,44(02):48-53. CHENG Xiaorui, FU Li, BAO Wenrui. Effect of pitch change of equal-pitch inducer on cavitation performance of centrifugal pump[J]. Journal of Lanzhou University of Technology, 2018,44(02):48-53. [2] 赵伟国, 朱昌健, 徐泽鑫, 等. 旁通装置控制离心泵空化特性的数值模拟与试验[J]. 振动与冲击, 2021, 40(1): 119-126. ZHAO Weiguo, ZHU Changjian, XU Zexin, et al. Numerical simulation and tests for cavitation characteristics of centrifugal pump controlled by bypass device[J]. Journal of Vibration and Shock, 2021,40(1): 119-126. [3] Tong Z M, Xin J G, Tong S G, et al. Internal flow structure, fault detection, and performance optimization of centrifugal pumps [J]. Journal of Zhejiang UniversitySCIENCE A, 2020, 21(2): 85-117. [4] 陈晖,李斌,张恩昭,等.高速平板诱导轮的结构设计与分析[J].火箭推进,2009,35(03):1-5. CHEN Hui, LI Bin, ZHANG Enzhao, et al. Rotating cavitation of the high-speed rotational inducer of LPRE[J]. Journal of Propulsion Technology, 2009,35(03):1-5. [5] 李欣,肖立明,刘畅,等.三叶片两级诱导轮的气蚀性能研究[J].火箭推进,2018,44(06):86-90. LI Xin, XIAO Liming, LIU Chang, et al. Study on cavitation performance of a two-stage inducer with three-blades[J]. Journal of Rocket Propulsion, 2018,44(06):86-90 . [6] 黄建德.诱导轮泵的汽蚀特性和内部流场的研究[J].工程热物理学报,1997(02):181-185. HUANG Jiande Alternate Blade Cavitation on Inducer [J]. Journal of Engineering Thermophysics ,1997(02):181-185. [7] 黄建德,谷传纲.诱导轮形状对汽蚀特性的影响[J].航空动力学报,2000(02):142-146. HUANG Jiande, GU Chuangang. The Effect of Inducer Shape on the Alternate Blade Cavitation[J]. Journal of Aerospace Power ,2000(02):142-146. [8] Cristina Bramanti. Experimental Study of Cavitation and Flow Instabilities in Space Rocket Turbopumps and Hydrofoils[D]. Pisa, Italy: Dottorato di Ricerca in Ingegneria , Dipartimento di Ingegnerria Aerospaziale, Università degli Studi di Pisa. [9] Coutier-Delgosha, O., Caignaert, G., Bois, G., et al. Influence of the Blade Number on Inducer Cavitating Behavior[J]. Journal of Fluids Engineering, 2012, 134. [10] Kimura T , Yoshida Y , Hashimoto T , et al. Numerical Simulation for Vortex Structure in a Turbopump Inducer: Close Relationship With Appearance of Cavitation Instabilities[J]. ASME Journal of Fluids Engineering, 2008, 130(5):051104. [11] 李龙贤, 林奇燕, 丁振晓. 诱导轮空化流场数值计算及实验研究[J]. 真空与低温, 2018, 024(004):251-258. LI Longxian, LIN Qiyan, DING Zhenxiao, et al. Inducer Cavitation Flow Field Numetical Simulation and Experiment Research[J]. Vacuum & Cryogenics, 2018, 024(004):251-258. [12] 司乔瑞, 余志顺, 袁寿其, 等. 带诱导轮高速离心泵流动诱导振动数值分析[J]. 振动与冲击, 2013, 32(20): 5. SI Qiaorui, YU Zhishun, YUAN Shouqi, et al. Numerical analysis for flow-induced vibration of a high speed centrifugal pump with inducer[J]. Journal of Vibration and Shock, 2013, 32(20): 5. [13] G. H. Schnerr and J. Sauer. Physical and numerical modelling of unsteady cavitation dynamics[C]//In 4th International Conference on Multiphase Flow . New Orleans:ICMF,2001. [14] 关醒凡. 现代泵理论与设计[M]. 北京: 中国宇航出版社, 2011.

PDF(1459 KB)

Accesses

Citation

Detail

段落导航
相关文章

/