水轮机调节系统与轴系耦合模型对系统参数的敏感性分析

章志平1,张送校1,杨雄1,秦程1,孙洁2,冯陈3,张玉全3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (8) : 78-88.

PDF(6657 KB)
PDF(6657 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (8) : 78-88.
论文

水轮机调节系统与轴系耦合模型对系统参数的敏感性分析

  • 章志平1,张送校1,杨雄1,秦程1,孙洁2,冯陈3,张玉全3
作者信息 +

Sensitivity analysis of the coupling model of a hydro-turbine governing system and a shaft system to system parameters

  • ZHANG Zhiping1,ZHANG Songxiao1,YANG Xiong1,QIN Cheng1,SUN Jie2,FENG Chen3,ZHANG Yuquan3
Author information +
文章历史 +

摘要

抽水蓄能电站频繁的暂态过程对轴系振动有重要影响,建立一个能够反应水电机组暂态响应的调节系统与轴系的耦合模型对于研究抽水蓄能电站的安全运行至关重要。本文以拉日朗日公式推导的扭矩方程为纽带,构建了水轮发电机组调节系统与考虑多振动诱发因素的轴系系统的瞬态耦合模型。计算了甩不同负荷下轴系的动态响应过程,分析了发电机偏心质量以及发电机励磁电流对轴系暂态过程的影响。研究发现:甩去的负荷越多,轴系在动态响应的过程中振动越剧烈,甩30%负荷,甩60%负荷,以及甩100%负荷后,发电机转子在x方向上的振幅较甩负荷前分别增加了68.7%,109.3%,以及126.3%。发电机的偏心质量越大,水轮发电机组轴系在动态响应过程中的幅值越高,系统越不稳定,而励磁电流越大,轴系在响应过程中的幅值越小,越有利于系统稳定运行。本文的目的是为水轮发电机组调速系统-轴系系统瞬态耦合模型的建立提供一种方法,探讨和评价甩负荷下瞬态耦合模型的参数敏感性,保障机组暂态下的安全稳定运行。

Abstract

The frequent transient process of pumped storage power station has an important effect on shafting vibration, so it is very important to establish a coupling model between the regulation system and shafting which can reflect the transient response of hydropower units for the safe operation of pumped storage power station. In this paper, a transient coupling model between the regulation system and the shafting system considering multiple vibration factors is established based on the torque equation derived from the Lagrangian formula. The dynamic response process of the shafting under different load rejection is calculated, and the influence of the eccentric mass of the generator and the excitation current of the generator on the transient process of the shafting is analyzed. It is found that the more the load is rejected, the more severe the vibration of the shafting in the process of dynamic response. After 30 %, 60 % and 100 % load rejection, the amplitude of the generator rotor in the x direction is increased by 68.7 %, 109.3 % and 126.3 % respectively compared with that before load rejection. The larger the eccentric mass of the generator is, the higher the amplitude of the shaft system of the hydro-generator set in the dynamic response process is, and the more unstable the system is. The larger the excitation current is, the smaller the amplitude of the shaft system in the response process is, which is more conducive to the stable operation of the system. The purpose of this paper is to provide a method for the establishment of the transient coupling model of the regulating system and shafting system of hydro-generator set, discuss and evaluate the parameter sensitivity of the transient coupling model under load rejection, and ensure the safe and stable operation of the unit under the transient state.

关键词

抽水蓄能电站 / 调节系统 / 轴系 / 动态响应 / 励磁电流 / 甩负荷

Key words

Pumped storage power station / governing system / shaft system / dynamic response / excitation current / load rejection

引用本文

导出引用
章志平1,张送校1,杨雄1,秦程1,孙洁2,冯陈3,张玉全3. 水轮机调节系统与轴系耦合模型对系统参数的敏感性分析[J]. 振动与冲击, 2024, 43(8): 78-88
ZHANG Zhiping1,ZHANG Songxiao1,YANG Xiong1,QIN Cheng1,SUN Jie2,FENG Chen3,ZHANG Yuquan3. Sensitivity analysis of the coupling model of a hydro-turbine governing system and a shaft system to system parameters[J]. Journal of Vibration and Shock, 2024, 43(8): 78-88

参考文献

[1] 肖广磊, 王振明, 李晓雯, 等. “双碳”目标下抽水蓄能电站建设分析[J]. 水科学与工程技术, 2023(2): 93–96. XIAO Guang-lei, WANG Zhen-ming, LI Xiao-wen, et al. Analysis of pumped storage power station construction under the goal of double carbon [J]. Water Sciences and Engineering Technology, 2023(2): 93–96. [2] 陈帝伊, 刘公成, 梁潇, 等. 定-变速抽水蓄能机组调相-发电过渡过程动态特性研究[J]. 水利学报, 2023, 54(1): 105–116. Chen diyi, liu gongcheng, liang xiao, et al. Study on dynamic characteristics of phase modulation-generation transition process of fixed-speed and variable-speed pumped-storage units [J]. Journal of Hydraulic Engineering, 2023, 54(1): 105–116. [3] 李建玲. 水轮发电机组轴系建模及振动特性研究[D]. 杨陵: 西北农林科技大学, 2020. Li jianling. Dynamic Modeling and Vibration Characteristics of Hydro-electric Generating Shafting System[D]. Yang ling: College of Water Resources and Architectural Engineering Northwest A&F University, 2020. [4] 张海库, 陈启卷, 耿清华, 等.大型水电机组动平衡试验研究[J]. 振动与冲击, 2021, 40(11): 124-127+153. ZHANG Ha-iku, CHEN Qi-juan, GENG Qing-hua, et al. Dynamic balance tests of large hydropower unit [J]. Journal of Vibration and Shock, 2021, 40(11): 124-127+153. [5] 许贝贝, 陈帝伊, 李欢欢, 等.参数异变性对冲击式水电站系统轴系振动摆度影响[J]. 振动与冲击, 2019, 38(23): 10-18. XU Bei-bei, CHEN Di-yi, LI Huan-huan, et al. Effects of parameter variation on a Pelton hydropower station system's shafting vibration [J]. Journal of Vibration and Shock, 2019, 38(23): 10-18. [6] 职保平, 秦净净, 李正星,等.混流式水轮机径向振动的传递路径分析[J]. 振动与冲击, 2019, 38(22): 7-13. ZHI Bao-ping, QIN Jing-jing, LI Zheng-xing, et al. Transmission path analysis on the radial vibration of a francis turbine [J]. Journal of Vibration and Shock, 2019, 38(22): 7-13. [7] 刘伟珣, 杨建刚, 沈德明. 轴系对中偏差对单支撑轴系振动的影响[J]. 动力工程学报, 2021, 41(5): 400-403+419. LIU wei-xun, YANG jian-gang, SHEN de-ming. Influence of Shaft Alignment Deviation on Vibration of Single-support Shafting [J]. Journal Of Chinese Society Of Power Engineering, 2021, 41(5): 400-403+419. [8] 邹佳杰, 周大庆, 郭俊勋, 等. 不同负荷工况水轮发电机组轴系振动特性研究[J]. 水电能源科学, 2023, 41(3): 176–180. ZOU Jia-jie, ZHOU Da-qing, GUO Jun-xun, et al. Research on Vibration Characteristics of Shafting System of Hydroelectric Generating Set Under Different Load Conditions [J]. Water Resources and Power, 2023, 41(3): 176–180. [9] 张浩. 水力发电系统瞬态动力学建模与稳定性分析[D]. 杨陵: 西北农林科技大学, 2019. ZHANG Hao. Transient Dynamical Modeling and Stability Analysis of Hydroelectric Power Systems [D]. Yang Ling: College of Water Resources and Architectural Engineering Northwest A&F University, 2019. [10] Chen D, Ding C, Do Y, et al. Nonlinear dynamic analysis for a Francis hydro-turbine governing system and its control[J]. Journal of the Franklin Institute, 2014, 351(9): 4596–4618. [11] Zhang L, Tang H, Sun T, et al. Vibration characteristics analysis of shaft system for bulb hydroelectric generating unit based on magnetorheological fluid damper[J]. Chaos, Solitons & Fractals, 2022, 163: 112559. [12] 周东东, 王斌, 艾博,等. 考虑死区的水轮机调节系统非线性自抗扰控制[J]. 水力发电学报, 2023, 42(01): 114-127. ZHOU Dong-dong, WANG Bin, AI Bo, et al. Nonlinear active disturbance rejection control of hydraulic turbine regulating system considering dead zone [J]. Journal of Hydroelectric Engineering, 2023, 42(01): 114-127. [13] 孔昭年, 田忠禄, 陈卓, 等. 具有长引水系统的转桨式水轮机过渡过程计算[J]. 水利学报, 2021, 52(10): 1204-1216. KONG Zhao-nian, TIAN Zhong-lu, CHEN Zhuo, et al. Calculation of transient process of Kaplan turbine with long diversion system [J]. Journal of Hydraulic Engineering, 2021, 52(10): 1204-1216. [14] 把多铎, 袁璞, 陈帝伊, 等. 复杂管系水轮机调节系统非线性建模与分析[J]. 排灌机械工程学报, 2012, 30(04): 428-435. BA Duo-ze, YUAN Pu, CHEN Di-yi, et al. Modeling and analysis of nonlinear hydro-turbine governing system with complex penstocks[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(04): 428-435. [15] 许贝贝, 陈帝伊, 张浩, 等. 随机转速波动下水轮机调节系统动力稳定性[J]. 振动与冲击, 2018, 37(12): 226-231. XU Bei-bei, CHEN Di-yi, ZHANG Hao, et al. Stability of a hydro-turbine governing system under stochastic fluctuating speed [J]. Journal of Vibration and Shock, 2018, 37(12): 226-231. [16] Li C, Chang L, Huang Z, et al. Parameter identification of a nonlinear model of hydraulic turbine governing system with an elastic water hammer based on a modified gravitational search algorithm[J]. Engineering Applications of Artificial Intelligence, 2016, 50: 177–191. [17] Zhang H, Chen D, Xu B, et al. Dynamic analysis of a pumped-storage hydropower plant with random power load[J]. Mechanical Systems and Signal Processing, 2018, 100: 524–533. [18] Guo B, Xu B, Chen D, et al. Dynamic modeling and energy distribution analysis in a hydroelectric generating system considering the stochastic turbine flow[J]. International Journal of Electrical Power & Energy Systems, 2018, 103: 611–621. [19] Zhang H, Chen D, Wu C, et al. Dynamics analysis of the fast-slow hydro-turbine governing system with different time-scale coupling[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 54: 136–147. [20] Gao X, Chen D, Zhang H, et al. Nonlinear fast–slow dynamics of a coupled fractional order hydropower generation system[J]. Chinese Physics B, 2018, 27(12): 128202. [21] Guo W, Yang J, Wang M, et al. Nonlinear modeling and stability analysis of hydro-turbine governing system with sloping ceiling tailrace tunnel under load disturbance[J]. Energy Conversion and Management, 2015, 106: 127–138. [22] Shi Yousong, Zhou Jianzhong. Stability and sensitivity analyses and multi-objective optimization control of the hydro-turbine generator unit[J]. Nonlinear Dynamics, 2022, 107(3): 2245-2273. [23] Zhang H, Chen D, Xu B, et al. Nonlinear modeling and dynamic analysis of hydro-turbine governing system in the process of load rejection transient[J]. Energy Conversion and Management, 2015, 90: 128–137. [24] Guo W, Yang J. Hopf bifurcation control of hydro-turbine governing system with sloping ceiling tailrace tunnel using nonlinear state feedback[J]. Chaos, Solitons & Fractals, 2017, 104: 426–434. [25] Xu B, Chen D, Zhang H, et al. Dynamic analysis and modeling of a novel fractional-order hydro-turbine-generator unit[J]. Nonlinear Dynamics, 2015, 81(3): 1263–1274. [26] Shi Y, Shen J, Guo W, et al. The nonlinear dynamic characteristics analysis and vibration reduction control of the shafting system of a hydropower unit[J]. International Journal of Non-Linear Mechanics, 2022, 146: 104166. [27] Zhuang K, Gao C, Li Z, et al. Dynamic Analyses of the Hydro-Turbine Generator Shafting System Considering the Hydraulic Instability[J]. Energies, 2018, 11(10): 2862. [28] Gao P, Hou L, Yang R, et al. Local defect modelling and nonlinear dynamic analysis for the inter-shaft bearing in a dual-rotor system[J]. Applied Mathematical Modelling, 2019, 68: 29–47. [29] The stability analysis and nonlinear vibration control of shaft system for hydraulic generating set under multi-source excitation considering effects of dynamic and static eccentricities[J]. Communications in Nonlinear Science and Numerical Simulation, Elsevier, 2023, 121: 107230. [30] Ma H, Li H, Zhao X, et al. Effects of eccentric phase difference between two discs on oil-film instability in a rotor–bearing system[J]. Mechanical Systems and Signal Processing, 2013, 41(1–2): 526–545. [31] Shi Y, Zhou J, Huang J, et al. A Vibration Fault Identification Framework for Shafting Systems of Hydropower Units: Nonlinear Modeling, Signal Processing, and Holographic Identification[J]. Sensors, Multidisciplinary Digital Publishing Institute, 2022, 22(11): 4266. [32] Xu B, Chen D, Behrens P, et al. Modeling oscillation modal interaction in a hydroelectric generating system[J]. Energy Conversion and Management, 2018, 174: 208–217. [33] 张伟. 水轮发电机组轴系统动力学研究[D]. 大连: 大连理工大学, 2008. ZHANG Wei. Research on Dynamics of Shaft System of Hydroelectric Generating Set [D]. Da Lian: Dalian University of Technology, 2008. [34] Xu B, Chen D, Zhang H, et al. Shaft mis-alignment induced vibration of a hydraulic turbine generating system considering parametric uncertainties[J]. Journal of Sound and Vibration, 2018, 435: 74–90.

PDF(6657 KB)

Accesses

Citation

Detail

段落导航
相关文章

/