二级齿轮非线性动态特性同伦摄动法分析

荀超,吴海轩,王云龙

振动与冲击 ›› 2024, Vol. 43 ›› Issue (8) : 89-97.

PDF(1725 KB)
PDF(1725 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (8) : 89-97.
论文

二级齿轮非线性动态特性同伦摄动法分析

  • 荀超,吴海轩,王云龙
作者信息 +

The homotopy analysis for the nonlinear dynamics of a multi-mesh gear train

  • XUN Chao,WU Haixuan,WANG Yunlong
Author information +
文章历史 +

摘要

考虑时变啮合刚度、脱齿、各级齿轮啮合间的耦合关系,建立了二级齿轮传动机构的刚柔混合模型,采用同伦超越摄动法分析了机构的非线性动态特性,得到了二级齿轮机构主共振、超谐共振和亚谐共振的频响表达式。与多尺度法不同,同伦法的分析精度不受脱齿程度的影响。与数值积分结果的对比表明,在脱齿率达到30%以上时,同伦法较多尺度法具有明显的计算精度优势。本研究为复杂齿轮传动机构的非线性动态特性分析提供了更为精确的理论分析方法。

Abstract

The nonlinearity in the multi-mesh gear train due to the periodically time-varying mesh stiffness, contact loss, and the couplings between the multi-mesh stiffnesses are considered. The nonlinear oscillation is investigated by the homotopy analysis method (HAM). And closed-form approximations for the primary resonance, sub-harmonic resonance, and super-harmonic resonance are obtained. In contrast to the method of multi-scale (MMS), the HAM is independent of the contact loss ratio. Results indicate that with large contact loss ratios over 30%, the amplitude-frequency curves obtained by HAM agree better with the numerical integration (NI) results than those obtained by the MMS. This study lays a higher accurate foundation for more complex nonlinear dynamic analysis of gear sets.

关键词

多级齿轮 / 同伦摄动法 / 脱齿 / 非线性动态特性

Key words

multi-mesh gear train / homotopy analysis method / contact loss / nonlinear dynamics

引用本文

导出引用
荀超,吴海轩,王云龙. 二级齿轮非线性动态特性同伦摄动法分析[J]. 振动与冲击, 2024, 43(8): 89-97
XUN Chao,WU Haixuan,WANG Yunlong. The homotopy analysis for the nonlinear dynamics of a multi-mesh gear train[J]. Journal of Vibration and Shock, 2024, 43(8): 89-97

参考文献

[1] Dai H, Long X, Chen F, et al. An improved analytical model for gear mesh stiffness calculation[J]. Mechanism and Machine Theory, 2021, 159(1):104262. [2] Bahk C J, Parker R G. Analytical Solution for the Nonlinear Dynamics of Planetary Gears [J]. Journal of Computational and Nonlinear Dynamics, 2011, 6(2):021007. [3] He Dai, Feng Chen, Chao Xun, et al.Numerical calculation and experimental measurement for gear mesh force of planetary gear transmissions[J]. Mechanical Systems and Signal Processing, 2022, Volume 162, 108085, [4] 常乐浩,袁冰,宋文,等. 齿轮副非线性接触特性与动力学耦合分析方法[J].西安交通大学学报,2022,56(10):1-10. CHANG Le-hao, YUAN Bing, SONG Wen, et al. A Model for Coupling Analysis of the Nonlinear Contact Characteristics and Dynamics of Gear Pairs[J]. Journal of Xi'an Jiaotong University, 2022, 56(10):1-10. [5] 向玲,刘随贤,张军华. 风电齿轮箱两级行星齿轮传动系统的非线性动力学特性[J]. 振动与冲击,2020, 39(15): 193-199. XIANG Ling, LIU Sui-xian, ZHANG Jun-hua. Nonlinear dynamic characteristics of two-stage planetary gear transmission system in wind turbinegearbox[J]. Journal of vibration and shock, 2020, 39(15): 193-199. [6] 宋强,孙丹婷,章伟. 两挡AMT斜齿轮弯扭轴耦合非线性振动特性分析[J]. 振动与冲击, 2021, 40(15): 18-25. SONG Qiang, SUN Dan-ting, ZHANG Wei. Analysis of bending-torsion-axis coupled nonlinear vibration characteristics of a two-gear pair AMT helical gear system[J]. Journal of vibration and shock, 2021, 40(15): 18-25. [7] Kahraman A, Singh R. Nonlinear Dynamics of a Spur Gear Pair. Journal of Sound and Vibration, 1990, 142(1): 49~75. [8] Kahraman A, Singh R. Nonlinear Dynamics of a Geared Rotor-bearing System with Multiple Clearances. Journal of Sound and Vibration, 1991, 144 (3): 469 ~506. [9] Kahraman A, Singh R. Interactions Between Time-varying Mesh Stiffness and Clearance Nonlinearities in a Geared system. Journal of Sound and Vibration, 1991, 146(1): 135~156. [10] Al-Shyyab A, Kahraman A. Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method: period-one motions [J]. Journal of Sound & Vibration, 2005, 284(1):151-172. [11] Zhu W, Wu S, Wang X, et al. Harmonic balance method implementation of nonlinear dynamic characteristics for compound planetary gear sets [J]. Nonlinear Dynamics, 2015, 81(3):1511-1522. [12] 孙涛, 胡海岩. 基于离散傅里叶变换与谐波平衡法的行星齿轮系统非线性动力学分析[J]. 机械工程学报, 2002, 38(11):58-61. SUN Tao, HU Hai-yan. Nonlinear dynamics of planetary gear transmission by harmonic balance method based on DFT [J]. Chinese Journal of Mechanical Engineering, 2002, 38(11):58-61. [13] 杨荣刚,安子军.基于谐波平衡法的摆线钢球行星传动等速输出机构非线性动态特性研究[J].振动与冲击, 2017, 36(02):153-158. YANG Rong-gang, AN Zi-jun. Nonlinear dynamic characteristics of the equal speed output mechanism of cycloid ball planetary transmission based on harmonic balance method[J]. Journal of Vibration and Shock, 2017, 36(02):153-158. [14] 刘大伟,刘志家,吕珍珍.基于谐波平衡法的非圆面齿轮多参变振动特性研究[J].北京理工大学学报, 2020, 40(07):697-704. LIU Da-wei, LIU Zhi-jia, LV Zhen-zhen. Multi-Parametric Vibration Characteristics of Noncircular Face Gear Based on Harmonic Balance Method[J]. Transactions of Beijing institute of Technology, 2020, 40(7): 697-704. [15] Liu G, Parker R G. Dynamic modeling and analysis of tooth profile modification for multimesh gear vibration [J]. Journal of Mechanical Design, 2008, 130(12): 121402. [16] Bahk C J, Parker R G. Analytical Solution for the Nonlinear Dynamics of Planetary Gears [J]. Journal of Computational & Nonlinear Dynamics, 2011, 6(2):021007. [17] Bahk C J, Parker R G. Analytical Solution for the Nonlinear Dynamics of Planetary Gears [J]. Journal of Computational & Nonlinear Dynamics, 2011, 6(2):021007. [18]廖世俊,刘曾.同伦分析方法进展综述[J].力学进展,2019,49(00):237-273. LIAO Shi-jun, Liu Zeng. A brief review of the homotopy analysis method[J]. Advances in Mechanics, 2019, 49: 201902. [19] Liao S, Sherif S A. Beyond Perturbation: Introduction to the Homotopy Analysis Method [J]. Applied Mechanics Reviews, 2004, 57(5):25. [20] Gepreel K A, Nofal T A. Optimal homotopy analysis method for nonlinear partial fractional differential equations [J]. Mathematical Sciences, 2015, 9(1):47-55. [21] Shreekant P. Pathak, Twinkle Singh. Optimal Homotopy Analysis Methods for Solving the Linear and Nonlinear Fokker-Planck Equations [J]. British Journal of Mathematics & Computer Science, 2015, 7(3):965-967. [22] FREIDOONIMEHR N, ROSTAMI B, RASHIDI M M. Predictor homotopy analysis method for nanofluid flow through expanding or contracting gaps with permeable walls [J]. International Journal of Biomathematics, 2015, 8(04):1257-. [23]Odibat Z, Sami Bataineh A. An adaptation of homotopy analysis method for reliable treatment of strongly nonlinear problems: construction of homotopy polynomials[J]. Mathematical Methods in the Applied Sciences, 2015, 38(5):991-1000. [24] Wen J, You B, Zhao J, et al. Primary resonances of gear systems with parametric and internal excitations solved by homotopy analysis method [J]. 2015, 3(1):113-121. [25] Wen J, Zhao I, Huang Q, et al. Study on Nonlinear Oscillations of Gear Systems with Parametric Excitation Solved by Homotopy Analysis Method [J]. International Journal of Nonlinear Sciences & Numerical Simulation, 2013, 14(6):429-434. [26] Wen J, You B, Zhao J, et al. Superharmonic Resonances of Parametricly Excited Gear System Solved by Homotopy Analysis Method [J]. International Journal of Hybrid Information Technology, 2014, 7.

PDF(1725 KB)

Accesses

Citation

Detail

段落导航
相关文章

/