页岩气水平井振动固井套管柱振动特性研究

齐林山1,尹宜勇1,曲从锋2,刘斌辉2,王立琰1,白翰钦3,王通1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (9) : 149-157.

PDF(2511 KB)
PDF(2511 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (9) : 149-157.
论文

页岩气水平井振动固井套管柱振动特性研究

  • 齐林山1,尹宜勇1,曲从锋2,刘斌辉2,王立琰1,白翰钦3,王通1
作者信息 +

Vibration characteristics of shale gas horizontal well vibration cementing casing string

  • QI Linshan1, YIN Yiyong1, QU Congfeng2, LIU Binhui2, WANG Liyan1, BAI Hanqin3, WANG Tong1
Author information +
文章历史 +

摘要

为了求解页岩气水平井振动固井套管柱振动特性和动力响应,考虑扶正器分布支承的特点,运用传递矩阵法建立了页岩气水平井套管柱的动力学模型,并通过试验验证了套管柱动力学模型的准确性。在此基础上,研究了扶正器支承和套管柱参数对套管柱振动特性的影响,探索了振动固井工况下套管柱的动力响应和振幅衰减规律。研究结果表明:扶正器刚度增大、扶正器支承数量增加和套管外径增大均会导致套管柱固有频率的增加;扶正器刚度增大会加快套管柱振幅衰减;增大激振力的同时利用低频共振能提高套管柱振动有效传播距离。该研究能够为页岩气水平井振动固井装备设计提供有益参考。

Abstract

This paper represented an approach to solving the casing string’s vibration characteristics and dynamic responses in vibration cementing of horizontal well for shale gas extraction. Considering the specific distributed supports of the centralizer, the dynamic model of the casing string was established by matrix transformation method, which was verified by experiments. Based upon the obtained dynamic model, the influences that the parameters of the centralizer’s supports and the casing string bring to the casing string’s vibration characteristics were studied, and the laws of dynamic responses and amplitude attenuation of the casing string in vibration cementing were investigated. It is shown that the natural frequencies of the casing string increase with the increment of the centralizer stiffness, the number of the centralizer supports, and the casing’s outer diameter. In the meantime, the increment of the centralizer stiffness accelerates the amplitude attenuation of the casing string. Furthermore, the effective propagation distance of the casing string vibration is improved by increasing the excitation force while using the low-frequency resonance. These achievements lay foundations for design of the equipment applied in vibration cementing of horizontal well for shale gas development.

关键词

页岩气水平井 / 套管柱 / 传递矩阵 / 振动特性 / 动力响应

Key words

shale gas horizontal well / casing string / transfer matrix / vibration characteristics / dynamic response

引用本文

导出引用
齐林山1,尹宜勇1,曲从锋2,刘斌辉2,王立琰1,白翰钦3,王通1. 页岩气水平井振动固井套管柱振动特性研究[J]. 振动与冲击, 2024, 43(9): 149-157
QI Linshan1, YIN Yiyong1, QU Congfeng2, LIU Binhui2, WANG Liyan1, BAI Hanqin3, WANG Tong1. Vibration characteristics of shale gas horizontal well vibration cementing casing string[J]. Journal of Vibration and Shock, 2024, 43(9): 149-157

参考文献

[1] 邹才能, 朱如凯, 董大忠, 等. 页岩油气科技进步、发展战略及政策建议[J]. 石油学报, 2022, 43(12): 1675-1686. ZOU Caineng, ZHU Rukai, DONG Dazhong, et al. Scientific and technological progress, development strategy and policy suggestion regarding shale oil and gas[J]. Acta Petrolei Sinica, 2022, 43(12): 1675-1686. [2] 张君峰, 周志, 宋腾, 等. 中美页岩气勘探开发历程、地质特征和开发利用条件对比及启示[J]. 石油学报, 2022, 43(12): 1687-1701. ZhANG Junfeng, ZHOU Zhi, SONG Teng, et al. Comparison of exploration and development history, geological characteristics and exploitation conditions of shale gas in China and the United States and its enlightenment [J]. Acta Petrolei Sinica, 2022,43(12): 1687 -1701. [3] 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(01): 1-14. ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(01): 1-14. [4] 蒋可, 李黔, 陈远林, 等. 页岩气水平井固井质量对套管损坏的影响[J]. 天然气工业, 2015, 35(12): 77-82. JIANG Ke, LI Qian, CHEN Yuanlin, et al. Influence of cementing quality on casing failures in horizontal shale gas well[J]. Natural Gas Industry, 2015, 35(12): 77-82. [5] 高德利, 刘奎, 王宴滨, 等.页岩气井井筒完整性失效力学机理与设计控制技术若干研究进展[J]. 石油学报, 2022, 43(12): 1798-1812. GAO Deli, LIU Kui, WANG Yanbin, et al. Some research advances in the failure mechanism and design & control technologies of shale gas well integrity [J]. Acta Petrolei Sinica, 2022, 43(12): 1798-1812. [6] XU B, YANG S, YUAN B, et al. Mechanism Analysis and Potential Solutions for Casing Deformation of Shale GAS Fracturing Wells in Sichuan Basin[J]. Processes, 2022, 10(9): 1711-1731. [7] AI C, CUI Z H, FENG F P, et al. Study on mechanism of shear swirling flow vibration cementing improving displacement efficiency in horizontal well[J]. Open Fuels and Energy Science Journal, 2015, 8(1): 58-62. [8] 廖华林, 李根生, 易灿,等. 水力脉冲振动注水泥装置的设计与试验[J]. 中国石油大学学报(自然科学版), 2008, 32(1): 47-50. LIAO Hualin, LI Gensheng, YI Can, et al. Design and experiment on hydraulic pulse generator for cementing [J]. Journal of China University of Petroleum (Natural Science Edition), 2008(01): 47-50. [9] YU Z N, YU F H, WEI T, et al. Study on the Mechanism of Enhancing Cementing Quality with the Downhole Shear Swirling Flow Vibration Cementing Tool [C]// IOP Conference Series: Earth and Environmental Science. Changchun: IOP Publishing, 2020. [10] 丁士东, 张鑫. 基于修正幂律模型流体的柳叶形扶正器旋流规律及应用[J]. 石油学报, 2020, 41(01): 96-105. DING Shidong, ZHANG Xin. Swirling flow regularity of willow leaf-like centralizer based on modified power law fluid model and its application[J]. Acta Petrolei Sinica, 2020, 41(01): 96-105. [11] 刘旭东, 孙伟. 多卡箍支撑的管路系统振动特性半解析建模及支撑位置优化[J]. 振动与冲击, 2021, 40(19): 32-40. LIU Xudong, SUN Wei. Semi-analytical dynamic modeling and support location optimization of pipeline system with multi-clamp support[J]. Journal of Vibration and Shock, 2021, 40(19): 32-40. [12]张宇, 孙伟, 刘旭东. 充液管路振动特性半解析建模及卡箍布局优化[J].中南大学学报(自然科学版),2022,53(11):4262-4270. Zhang Yu, Sun Wei, LIU Xudong. Semi-analytical modeling of vibration characteristics for liquid-filled pipeline and clamps layout optimization[J]. Journal of Central South University (Science and Technology), 2002, 53(11): 4246-4270. [13] 赵勤, 黄云伟, 徐中明, 等. 汽车空调低压管路流固耦合振动特性分析[J]. 振动与冲击, 2022, 41(10): 244-251. ZHAO Qin, HUANG Yunwei, XU Zhongming, et al. Fluid structure interaction vibration characteristics of the low pressure pipeline of an automotive air conditioning system [J]. Journal of Vibration and Shock, 2022, 41(10):244-251. [14] 刘诗文, 赫荣辉, 杨钊, 等. 输流管网流致振动特性数值模拟研究[J]. 核动力工程, 2022, 43(01): 187-191. Liu Shiwen, He Ronghui, Yang Zhao, et al. Numerical Simulation Research on Flow-Induced Vibration Characteristics of Fluid- Conveying Pipe Network [J]. Nuclear Power Engineering, 2022, 43(01): 187-191. [15] 吴江海, 苏明珠, 尹志勇, 等. 复合材料充液管路流固耦合特性分析[J]. 振动与冲击, 2023, 42(07): 99-105. WU Jianghai, SU Mingzhu, YIN Zhiyong, et al. Fluid-structure interaction characteristics analysis of composite liquid-filled pipeline[J]. Journal of Vibration and Shock, 2023, 42(07): 99-105. [16] GUO X M, XIAO C L, MA H, et al. Improved frequency modeling and solution for parallel liquid-filled pipes considering both fluid-structure interaction and structural coupling [J]. APPLIED MATHEMATICS AND MECHANICS (ENGLISH EDITION), 2022, 43(8), 1269-1288. [17] GUO X M, XIAO C L, MA H ,et al. Vibration analysis for a parallel fluid-filled pipelines-casing model considering casing flexibility [J]. International Journal of Mechanical Sciences, 2022, 231(6): 958-973. [18] 郑章义, 夏宏南, 杨明合,等. 套管在水力脉冲式振动固井中横向振动模型的建立与求解[J]. 长江大学学报(自然科学版), 2011, 8(03): 50-51. ZHENG Zhangyi, XIA Hongnan, YANG Minghe, et al. Establish and solute the transverse vibration model of casing in hydraulic pulse vibration cementing[J]. Journal of Yangtze University (Natural Science Edition), 2011, 8(03): 50-51. [19] 任锐, 姬丽臻, 高德利,等. 套管-水泥浆系统流固耦合振动特性研究[J]. 应用力学学报, 2017, 34(04): 610-614+809. REN Rui, JI Lizhen, GAO Deli, et al. Study on fluid-structure interaction vibration characteristics of casing-cement slurry system[J]. Chinese Journal of Applied Mechanics, 2017, 34(04): 610-614+809. [20] 尹宜勇, 白翰钦, 曲从锋, 等. 基于动力学缩比和传递矩阵法的水平井基频求解方法[J]. 中国石油大学学报(自然科学版), 2022, 46(03): 158-165. YIN Yiyong, BAI Hanqin, QU Congfeng, et al. Method of solving fundamental frequency of horizontal wells based on dynamic scaling and transfer matrix methods[J]. Journal of China University of Petroleum(Natural Science Edition), 2022, 46(03): 158-165. [21] WOJTANOWICZ A K, SMITH J R, NOVAKOVIC D, et al. Cement pulsation treatment in wells[C]//SPE Annual Technical Conference and Exhibition. San Antonio, Texas: SPE, 2002. [22] 练章华, 李文魁, 陈小榆. 顶部水泥脉冲振动的数学模型[J]. 石油学报, 2001(01): 83-88+2. LIAN Zhanghua, LI Wenkui, CHEN Xiaoyu. Mathematical model of pulse vibration of top cement[J]. Acta Petrolei Sinica, 2001(01): 83-88+2. [23] 丁士东,廖华林,李根生,等. 井口脉冲压力在环空中传播规律分析[J]. 天然气工业, 2007(02): 57-59+152-153. DING Shidong, LIAO Hualin, LI Gensheng, et al. Analysis of wellhead pulse pressure propagation law in ring air[J]. Natural Gas Industry, 2007(02): 57-59+152-153. [24] ZHANG X B, YANG Q Z, XU F Y, et al. Field Test of Vibration Wave Attenuation Coefficient Model in Casing Medium[C]//Journal of Physics: Conference Series. Xi'an: IOP Publishing, 2021. [25] MATTIN J N, SMITN J R, WOJTANOWICZ A K. Experimental assessment of methods to maintain bottomhole pressure after cement placement[C]//Proceedings of ETCE 2001 Engineering Technology Conference on Energy. Houston, Texas: ASME, 2001. [26] KUNJU M R, WOJTANOWICZ A K. Well cementing diagnosis from top cement pulsation record[C]// SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana: One Petro, 2001. [27] DUSTERHOFT D, WILSON G, NEWMAN K. Field study on the use of cement pulsation to control gas migration[C] //SPE Unconventional Resources Conference/Gas Technology Symposium. Calgary, Alberta: SPE, 2002. [28] 尹宜勇, 苏义脑, 王兆会. 电力振动器激振作用下的套管串振动特性[J]. 天然气工业, 2017, 37(05): 62-67. YIN Yiyong, SU Yinao, WANG Zhaohui. Vibration characteristics of casing string under the exciting force of an electric vibrator[J]. Natural Gas Industry, 2017, 37(05): 62-67. [29] 孙博华. 量纲分析与Lie群[M].北京: 高等教育出版社, 2016: 1-74. SUN Bohua. Dimensional analysis and Lie group [M].Beijing: Higher Education Press, 2016: 1-74. [30] 刘明, 李富平, 徐飞, 等. 基于ABAQUS的整体式弹性扶正器设计方法研究[J]. 石油矿场机械, 2016, 45(10): 7-10. LIU Ming, LI Fuping, XU Fei, et al. Research on Design Method of Monolithic Bow Spring Centralizer Based on ABAQUS[J]. Oil Field Equipment, 2016,45(10):7-10.

PDF(2511 KB)

Accesses

Citation

Detail

段落导航
相关文章

/