基于稀疏约束的最小方差无偏自适应荷载估计

李东升1,魏达2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (9) : 158-165.

PDF(2049 KB)
PDF(2049 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (9) : 158-165.
论文

基于稀疏约束的最小方差无偏自适应荷载估计

  • 李东升1,魏达2
作者信息 +

Minimum variance unbiased adaptive load estimation based on sparse constraints

  • LI Dongsheng1, WEI Da2
Author information +
文章历史 +

摘要

本文提出了一种基于稀疏约束的最小方差无偏自适应荷载估计算法,该算法是对传统的最小方差无偏估计算法的改进。利用大部分结构荷载在空间稀疏的特点,通过PM技术对荷载向量施加了一个稀疏约束,最终无约束的最小二乘估计转换为了基于l1范数的稀疏约束,在这样的改进下,传统算法在加速度观测下的荷载漂移问题被有效的解决,同时提高了算法荷载估计的鲁棒性。此外,对于噪声估计传统做法都是通过经验进行手动设置,在工程应用中极大不便。基于此,我们引入了自适应估计算法,实现了测量噪声协方差自适应估计。最后,通过1个10自由度弹簧阻尼系统和一个3层框架实验结构验证了算法的有效性。

Abstract

This paper presents an improved algorithm for load estimation based on sparse constraints, an improvement of the traditional minimum variance unbiased load estimation algorithm. The improvement is achieved by applying a sparse constraint on the force vector with the PM technique utilizing the space-sparse characteristic of the force to be estimated. This constraint transforms the unconstrained optimization of force estimation into a constrained optimization based on the l1-norm, effectively solving the force drift problem and improving the robustness of force estimation. Moreover, an adaptive estimation algorithm is introduced to realize the adaptive estimation of measurement noise covariance, as the conventional approach of manually setting the noise covariance is inconvenient in engineering applications. The performance of the proposed algorithm is evaluated through numerical simulations and experiments on a three-story shear building。

关键词

最小方差无偏估计 / 荷载估计 / 稀疏约束 / 自适应估计 / 荷载漂移

Key words

minimum variance unbiased estimation / force estimation / sparse constraint / adaptive estimation / force drift

引用本文

导出引用
李东升1,魏达2. 基于稀疏约束的最小方差无偏自适应荷载估计[J]. 振动与冲击, 2024, 43(9): 158-165
LI Dongsheng1, WEI Da2. Minimum variance unbiased adaptive load estimation based on sparse constraints[J]. Journal of Vibration and Shock, 2024, 43(9): 158-165

参考文献

[1] Giansante N, Jones R , Calapodas N J. Determination of In-Flight Helicopter Loads [J]. Journal of the American Helicopter Society, 1981, 27(3): 58-64. [2] Li D , Guo X. Experimental random loading identification using inverse pseudo excitation method [J]. Engineering Mechanics, 2004, 21: 134-140. [3] 熊铁华 , 梁枢果. 大跨越钢管混凝土输电塔顺风向分区风荷载谱识别方法 [J]. 振动与冲击, 2012, 31(23): 26-31. Xiong T H , Liang S G . Along-wind load spectra identification method for a long-span concrete-filled steel-tube transmission tower [J]. Journal of Vibration & Shock, 2012, 31(23):26-31. [4] 张超东, 黎剑安 , 张浩. 基于增秩 Kalman 滤波的移动车辆荷载在线识别 [J]. 振动与冲击, 2022, 32(2): 33-49. Zhang Chaodong, Li Jian'an, Zhang Hao. Augmented Kalman filter based moving vehicle loads online identification [J]. Journal of Vibration & Shock, 2022, 32(2): 33-49. [5] 侯秀慧, 邓子辰 , 黄立新. 基于精细积分方法的桥梁结构移动荷载识别 [J]. 振动与冲击, 2007, 26(9): 142-145. Hou X H , Deng Z C , Huang L X . Dynamic moving load identification for bridge structures based on precise integration method [J]. Journal of Vibration and Shock, 2007, 26(9): 142-145. [6] 陈震 , 余岭. 基于截断 GSVD 方法的桥梁移动荷载识别 [J]. 振动与冲击, 2014, 33(10): 97-100. Chen Z , Yu L. Identification of dynamic axle loads on a bridge based on truncated generalized singular value decomposition [J]. Journal of Vibration and Shock, 2014, 33(10):97-100. [7] 余岭, 陈鸿天 , 罗绍湘. 用时域法和频时域法识别桥面移动车载 [J]. 工程力学, 2001, 18(5): 100-107. Ling Y , Chan T , Law S S . Identification of Moving Vehicle Loads on Bridges using Time Domain Method and Frequency-Time Domain Method [J]. Engineering Mechanics, 2001, 18(5): 100-107. [8] Law S S, Bu J Q , Zhu X. Time-varying wind load identification from structural responses [J]. Engineering Structures, 2005, 27(10): 1586-1598. [9] 雷鹰, 刘丽君 , 郑翥鹏. 结构健康监测若干方法与技术研究进展综述 [J]. 厦门大学学报 (自然科学版), 2021, 60(3): 630-640. Lei Ying, Liu Lijun, Zhang Zhupeng. Review on the developments of some methods and techniques in structural health monitoring [J]. Journal of Xiamen University (Natural Science), 2021, 60(3): 630-640. [10] Lourens E, Reynders E, Roeck G D, et al. An augmented Kalman filter for force identification in structural dynamics [J]. Mechanical Systems and Signal Processing, 2012, 27(none): 446-460. [11] Azam S E, Chatzi E , Papadimitriou C. A dual Kalman filter approach for state estimation via output-only acceleration measurements [J]. Mechanical Systems and Signal Processing, 2015, 60-61(aug.): 866-886. [12] Gillijns S , Moor B D. Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough [J]. Automatica, 2007, 43(5): 934-937. [13] Gillijns S , Moor B D. Unbiased minimum-variance input and state estimation for linear discrete-time systems [J]. Automatica, 2007, 43(1): 111-116. [14] Lourens E, Papadimitriou C, Gillijns S, et al. Joint input-response estimation for structural systems based on reduced-order models and vibration data from a limited number of sensors [J]. Mechanical Systems and Signal Processing, 2012, 29(none): 310-327. [15] Maes K, Smyth A W, Roeck G D, et al. Joint input-state estimation in structural dynamics [J]. Mechanical Systems and Signal Processing, 2016, 70-71: 445-466. [16] Maes K, Iliopoulos A, Weijtjens W, et al. Dynamic strain estimation for fatigue assessment of an offshore monopile wind turbine using filtering and modal expansion algorithms [J]. Mechanical Systems and Signal Processing, 2016, 76-77: 592-611. [17] Maes K, Nimmen K V, Lourens E, et al. Verification of joint input-state estimation for force identification by means of in situ measurements on a footbridge [J]. Mechanical Systems and Signal Processing, 2016, 75: 245-260. [18] Huang J, Li X, Yang X, et al. Experimental validation of the proposed extended Kalman filter with unknown inputs algorithm based on data fusion [J]. Journal of Low Frequency Noise, Vibration and Active Control, 2020, 39(4): 835-849. [19] 郭丽娜, 宋开明, 张延哲, 等. 基于 UKF 的结构动荷载识别方法与试验验证 [J]. 振动与冲击, 2019, 38(3): 67-74. Guo L , Song K , Zhang Y , et al. Identification method and test validation for structural dynamic load based on UKF algorithm[J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2019, 38(3):67-74. [20] Liu L, Su Y, Zhu J, et al. Data fusion based EKF-UI for real-time simultaneous identification of structural systems and unknown external inputs [J]. Measurement, 2016, 88: 456-467. [21] Orović I, Papić V, Ioana C, et al. Compressive sensing in signal processing: algorithms and transform domain formulations [J]. Mathematical Problems in Engineering, 2016, 2016(7616393) [22] Vaswani N. Analyzing Least Squares and Kalman Filtered Compressed Sensing[A], 2009 IEEE International Conference on Acoustics, Speech and Signal Processing [C]. 2009: 3013-3016. [23] Vaswani N. Kalman filtered Compressed Sensing[A], 15th IEEE International Conference on Image Processing [C]. 2008: 893-896. [24] Vaswani N. LS-CS-Residual (LS-CS): Compressive Sensing on Least Squares Residual [J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4108-4120. [25] Kyriakides,Ioannis. Target tracking using adaptive compressive sensing and processing [J]. Signal Processing, 2016, 127: 44-55. [26] Majumdar A. Causal MRI reconstruction via Kalman prediction and compressed sensing correction [J]. Magnetic Resonance Imaging, 2017, 39: 64-70. [27] Cohen D, Mishra K V , Eldar Y C. Spectrum Sharing Radar: Coexistence via Xampling [J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1279-1296. [28] Zhang X, Ma Y, Gao Y, et al. Autonomous Compressive Sensing Augmented Spectrum Sensing [J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 6970-6980. [29] Vaswani N , Zhan J. Recursive recovery of sparse signal sequences from compressive measurements: A review [J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3523-3549. [30] Carmi A, Gurfil P , Kanevsky D. Methods for sparse signal recovery using Kalman filtering with embedded pseudo-measurement norms and quasi-norms [J]. IEEE Transactions on Signal Processing, 2010, 58(4): 2405-2409. [31] Ding W, Wang J, Rizos C, et al. Improving adaptive Kalman estimation in GPS/INS integration [J]. The Journal of Navigation, 2007, 60(3): 517-529. [32] 黄观文, 杨元喜 , 张勤. 开窗分类因子抗差自适应序贯平差用于卫星钟差参数估计与预报 [J]. 测绘学报, 2011, 40(1): 15-21. Huang G , Yang Y , Zhang Q . Estimate and Predict Satellite Clock Error Using Adaptively Robust Sequential Adjustment with Classified Adaptive Factors Based on Opening Windows[J]. Acta Geodaetica Et Cartographica Sinica, 2011, 40(1):15-21. [33] 王振杰, 刘慧敏, 单瑞, 等. 顾及系统噪声和观测噪声的分级自适应信息滤波算法 [J]. 武汉大学学报, 2021, 46(1): 88-95. Wang Zhenjie, Liu Huimin, Shan Rui, et al. Hierarchical Adaptive Information Filtering Algorithm Considering System Noise and Observation Noise [J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 88-95. [34] FigueiredoE, M. D. Todd, C. R. Farrar, et al. Autoregressive modeling with state-space embedding vectors for damage detection under operational variability [J]. International Journal of Engineering Science, 2010, 48(10): 822-834.

PDF(2049 KB)

274

Accesses

0

Citation

Detail

段落导航
相关文章

/