耦合索股系统自振特性与索力全局识别算法

张卓杰1, 2,王熙程1,武朝帅1,甄晓霞3,李丹枫4

振动与冲击 ›› 2024, Vol. 43 ›› Issue (9) : 27-35.

PDF(2686 KB)
PDF(2686 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (9) : 27-35.
论文

耦合索股系统自振特性与索力全局识别算法

  • 张卓杰1, 2,王熙程1,武朝帅1,甄晓霞3,李丹枫4
作者信息 +

Natural vibration characteristics of coupled cable strand system and global identification algorithm for cable force

  • ZHANG Zhuojie1,2, WANG Xicheng1, WU Zhaoshuai1, ZHEN Xiaoxia3, LI Danfeng4
Author information +
文章历史 +

摘要

索是缆索承重结构重要的受力构件,索力直接影响结构的服役状态与使用寿命。对于局部刚性耦合的索股结构,索股振动具有独立性和耦联性,系统呈现的整体振动与完全独立或完全耦合的索股系统振动特性均不同。为了对局部刚性耦合的索股系统的索力进行有效识别,首先建立耦合多索股模型并推导了系统的振动方程,根据系统的频率方程对系统的自振特性进行参数分析;然后将填充函数法和最优化理论相结合,构建了耦合索股系统索力识别算法,实现了索力全局识别;最后通过试验和有限元仿真验证了算法的正确性和可靠性。结果表明:刚性耦合使各索股振动同频,索股系统的自振频率在整数倍频之间出现了分数倍频,在整体振型之间出现局部振型;本文所提出的基于全局最优化理论的索力识别算法对迭代初值要求低,计算精度和收敛效率高,可扩展到其他参数识别问题中。

Abstract

Cable is an essential force transmission component of the cable supported structures, and its cable force directly affects the service condition and lifespan of the structures. In general, for cable supported structures with locally rigid coupling, the cable strand vibration is independent and coupled. the vibration characteristics of the parallel strand cables are different from those of the single cable strand or the cables with good integrity. In order to effectively identify the tensions in the parallel strand cables with rigid couplings, Firstly, the model of multi-strand coupled system was established and the vibration equations of the system was derived, According to the vibration equations of the system, the parametric analysis of vibration characteristics was performed on the coupled system; Then, combined the filled function method and optimization theory, the identification algorithm for cable force of multi rigid couplings cable strands was constructed, the global identification of cable force was realized; Finally, the correctness and reliability of the algorithms were demonstrated by the experiment and finite element simulation. The results show that the rigid coupling ensures that each cable strand vibrates synchronously, the natural vibration frequencies of the parallel strand cables appear fractional frequency doubling, and there are local differences in the overall vibration modes; The cable force identification algorithm based on global optimization theory proposed in this paper exhibits low requirements for initial values, high calculation accuracy, and convergence efficiency, and can be extended to other parameter identification problems.

关键词

刚性耦合 / 自振特性 / 填充函数 / 全局最优化 / 索力识别

Key words

rigid couplings / natural vibration characteristics / filled function / global optimization / tension identification

引用本文

导出引用
张卓杰1, 2,王熙程1,武朝帅1,甄晓霞3,李丹枫4. 耦合索股系统自振特性与索力全局识别算法[J]. 振动与冲击, 2024, 43(9): 27-35
ZHANG Zhuojie1,2, WANG Xicheng1, WU Zhaoshuai1, ZHEN Xiaoxia3, LI Danfeng4. Natural vibration characteristics of coupled cable strand system and global identification algorithm for cable force[J]. Journal of Vibration and Shock, 2024, 43(9): 27-35

参考文献

[1] 郑罡,孙测世,张晓东,等. 刚性索动力学系统的约化与索力测量[J]. 土木工程学报, 2021, 54(11): 71-78. ZHENG Gang, SUN Ce-shi, ZHANG Xiao-dong, et al. Coefficient normalization of the dynamic equation of rigid cables and its application to cable tension measurements [J]. China civil engineering journal, 2021, 54(11): 71-78. [2] 单德山,董俊,刘昕玥,等. 具有减振器的吊杆施工期索力识别[J]. 中国公路学报, 2015, 28(8): 31-39. SHAN De-shan, DONG Jun, LIU Xin-yue, et al. Tension identification of suspender with damper under construction [J]. China journal of highway and transport, 2015, 28(8): 31-39. [3] 李睿,李晓章,郑祥隆,等. 粒子群算法在基于频率的两端固结吊杆索力识别中的应用[J]. 振动与冲击, 2018, 37(9): 196-201. LI Rui, LI Xiao-zhang, ZHENG Xiang-long, et al. Application of PSO in frequency-based tension identification of hanger rods with two fixed ends [J]. Journal of vibration and shock, 2018, 37(9): 196-201. [4] Ahmad J, Cheng S, Ghrib F. Combined effect of external damper and cross-tie on the modal response of hybrid two-cable networks[J]. Journal of Sound and Vibration, 2018, 417: 132-148. [5] Ahmad J, Cheng S, Ghrib F. Impact of cross-tie design on the in-plane stiffness and local mode formation of cable networks on cable-stayed bridges[J]. Journal of Sound and Vibration, 2016, 363: 141-155. [6] Ahmad J. In-plane dynamic behaviour of conventional and hybrid cable network systems on cable-stayed bridges[D]. University of Windsor, Windsor, Canada, 2016 [7] 张卓杰,谷利雄,王东强,等. 刚性耦合对多索股结构自振特性的影响[J]. 铁道学报, 2021, 43(7): 153-160. ZHANG Zhuo-jie, GU Li-xiong, WANG Dong-qiang, et al. Influence of rigid coupling on natural vibration characteristics of multi-strand cables [J]. Journal of the China railway society, 2021, 43(7): 153-160. [8] 张卓杰,蒋毅,王熙程,等. 平行钢绞线斜拉索索股接触效应与力学行为研究[J]. 中南大学学报:自然科学版, 2022, 53(4): 1472-1483. ZHANG Zhuo-jie, JIANG Yi, WANG Xi-cheng, et al. Study on contact effect and mechanical behavior of parallelstrand cables [J]. Journal of Central South University: Science and Technology, 2022, 53(4): 1472-1483. [9] 周海俊,杨夏. 辅助索接地的简化索网-阻尼器系统的阻尼和频率[J]. 西南交通大学学报, 2014, 49(6): 948-953. ZHOU Hai-jun, YANG Xia. Damping and frequency of simplified cable-network-damper system with cross-tie fixed to ground [J]. Journal of southwest jiaotong university, 2014, 49(6): 948-953. [10] Park T, Hyung Lee D, Hwa Kim B. Estimation of tension force in double hangers by a system identification approach[J]. Inverse Problems in Science and Engineering, 2010, 18(2): 197-216. [11] Hung Y H, Fu J Y, Gan Q, et al. New Method for Identifying Internal Forces of Hangers Based on Form-Finding Theory of Suspension Cable[J]. Journal of Bridge Engineering, 2017, 22(11): 04017096. [12] 甄晓霞,陈炜,张卓杰. 基于索网模型的悬索桥双吊索参数识别方法[P]. 2021-04-13. [13] Ge R P, Qin Y F. A class of filled functions for finding global minimizers of a function of several variables[J]. Journal of Optimization Theory and Applications, 1987, 54(2): 241-252. [14] 吕颖慧,高峰,秦磊. 基于填充函数与DCD的全局优化算法及其反演[J]. 应用力学学报, 2021, 38(1): 361-366. LÜ Ying-hui, GAO Feng, QIN Lei. A global optimization method based on filled function and DCD and its application in inverse analysis [J]. Chinese journal of applied mechanics, 2021, 38(1): 361-366. [15] 陈佳利,张莹,王胜刚,等. 一个新的填充函数及其在数据拟合问题中的应用[J]. 运筹学学报, 2021, 25(1): 81-88. CHEN Jia-li, ZHANG Ying, WANG Sheng-gang, et al. A new filled function and its application in datafitting problems [J]. Operations research transactions, 2021, 25(1): 81-88. [16] 李东升,陈琪舟,魏达,等. 不确定刚度和边界约束条件下的轴力识别[J]. 振动与冲击, 2022, 41(20): 208-215. LI Dong-sheng, CHEN Qi-zhou, WEI Da, et al. Axial force identification for uncertain stiffness and boundary constraints [J]. Journal of vibration and shock, 2022, 41(20): 208-215. [17] 王凌. 智能优化算法及其应用[M]. 北京:清华大学出版社,2001. [18] Lampariello F, Liuzzi G. A filling function method for unconstrained global optimization[J]. Computational Optimization and Applications, 2015, 61(3): 713-729. [19] Gao Y, Yang Y, You M. A new filled function method for global optimization[J]. Applied Mathematics and Computation, 2015, 268: 685-695. [20] Pandiya R, Salmah S, Widodo W, et al. Finding global minima with an inflection point-based filled function algorithm[J]. Numerical Algorithms, 2023, 92(2): 1403-1424. [21] 徐佳,施羽禧,杨永建. 基于单参数填充函数的全局最优化算法[J]. https://kns.cnki.net/kcms/detail/31.1732.O1.20220516.0922.002.html. XU Jia, SHI Yu-xi, YANG Yong-jian. A filled function with one parameter for unconstrained global optimization problems [J]. Operations research transactions, 2023. [22] Lin H, Wang Y, Gao Y, et al. A filled function method for global optimization with inequality constraints[J/OL]. Computational and Applied Mathematics, 2018, 37(2): 1524-1536. [23] 李博,鲁殿军. 一个新的单参数填充函数算法[J]. 工程数学学报, 2015, 32(2): 269-275. LI Bo, LU Dian-jun. A new one-parameter filled function algorithm [J]. Chinese journal of engineering mathematics, 2015, 32(2): 269-275.

PDF(2686 KB)

Accesses

Citation

Detail

段落导航
相关文章

/