深厚覆盖层上沥青混凝土心墙坝非平稳随机地震动响应分析

王宗凯,宋志强,刘云贺

振动与冲击 ›› 2024, Vol. 43 ›› Issue (9) : 298-308.

PDF(4138 KB)
PDF(4138 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (9) : 298-308.
论文

深厚覆盖层上沥青混凝土心墙坝非平稳随机地震动响应分析

  • 王宗凯,宋志强,刘云贺
作者信息 +

Non-stationary random seismic response of asphalt concrete core wall

  • WANG Zongkai, SONG Zhiqiang, LIU Yunhe
Author information +
文章历史 +

摘要

沥青混凝土心墙坝由于良好的环境适应能力是我国西南强震区深厚覆盖层场地的优选坝型,然而对于沥青混凝土心墙坝非平稳随机地震作用下的抗震安全评价研究尚有不足。本文采用改进的Clough-Penzien功率谱结合随机函数,充分考虑地震动频率与强度的非平稳特征,生成了一系列与反应谱拟合的非平稳随机地震动集合,以某深厚覆盖层上沥青混凝土心墙坝为例,对其坝顶水平加速度及竖向永久变形等响应的均值及变化范围等进行了统计分析及分布检验,揭示了覆盖层与坝体响应均值及变异性沿高程变化规律,并通过概率密度演化方法,展示了坝顶水平加速度概率密度沿时间的演化过程,同时对生成的55条非平稳随机地震动进行调幅,结合MSA易损性分析方法开展了深厚覆盖层上沥青混凝土心墙坝非平稳随机地震动易损性分析,给出了以震陷率为破坏等级控制指标的坝体易损性曲线,为深厚覆盖层上沥青混凝土心墙坝的抗震安全评价提供了新的方法和思路。

Abstract

Because of its good environmental adaptability, the asphalt concrete core dam is the finest dam type for the deep overburden site in southwest China's strong seismic zone. Unfortunately, research on the seismic safety evaluation of asphalt concrete core dams under non-stationary random earthquake action is relatively limited. The modified Clough-Penzien power spectrum combined with a random function is utilized in this research to construct a series of non-stationary random ground motion sets that fit the response spectrum while taking into account the non-stationary properties of ground motion frequency and intensity. The mean value and variation range of the horizontal acceleration and vertical permanent deformation of the dam crest are statistically evaluated and tested using an asphalt concrete core dam on a deep overburden layer as an example. The mean value and variability of the response of the overburden and the dam body along elevation are revealed, and the probability density evolution method is used to expose the evolution process of the probability density of the horizontal acceleration of the dam crest over time. At the same time, 55 non-stationary random ground motions generated are magnified and the non-stationary random seismic vulnerability curve of asphalt concrete core dam on deep overburden is developed by combining MSA vulnerability analysis method. The vulnerability curve of dam body with collapse rate as control index of damage level is given. It provides a new method and idea for seismic safety evaluation of asphalt concrete core dam on deep overburden.

关键词

沥青混凝土心墙坝 / 深厚覆盖层 / 非平稳随机地震动 / 动力响应 / 易损性分析

Key words

asphalt concrete core dam / deep overburden / non-stationary random ground motion / dynamic response / vulnerability analysis

引用本文

导出引用
王宗凯,宋志强,刘云贺. 深厚覆盖层上沥青混凝土心墙坝非平稳随机地震动响应分析[J]. 振动与冲击, 2024, 43(9): 298-308
WANG Zongkai, SONG Zhiqiang, LIU Yunhe. Non-stationary random seismic response of asphalt concrete core wall[J]. Journal of Vibration and Shock, 2024, 43(9): 298-308

参考文献

[1] 孔宪京, 陈健云, 邹德高. 高坝抗震安全理论发展趋势研究 [J]. 水力发电学报, 2020, 39(07): 1-11. KONG Xianjing, CHEN Jianyun, ZOU Degao. Study on development trend of seismic safety theory for high dams [J]. Journal of Hydroelectric Engineering, 2020, 39(07): 1-11. [2] HOUSNER G W. Characteristics of strong-motion earthquakes [J]. Bulletin of the Seismological Society of America, 1947, 37(1): 19-31. [3] KANAI K. Semi-empirical Formula for the Seismic Characteristics of the Ground, F, 1957 [C]. [4] RUIZ P. Probabilistic study of the behavior of structures during earthquake [J]. [5] 於三大, 杜俊慧, 熊先仁. 土石坝的随机动力可靠性分析 [J]. 长江科学院院报, 1993, (03): 68-72. YU Sanda, DU Junhui, XIONG Xianren. The stochastic dynamic reliability analysis of earth dam [J]. Journal of Changjiang River Scientific Research Institute, 1993, (03): 68-72. [6] 刘汉龙. 随机地震作用下地基及土石坝永久变形分析 [J]. 岩土工程学报, 1996, (03): 19-27. LIU Hanlong. Permanent deformation of foundation and embankement dam due to stochastic seismic excitation [J]. Chinese Journal of Geotechnical Engineering, 1996, (03): 19-27. [7] 邵龙潭, 唐洪祥, 孔宪京等. 随机地震作用下土石坝边坡的稳定性分析 [J]. 水利学报, 1999, (11): 66-71. SHAO Longtan, TANG Hongxiang,KONG Xianjing, et al. Finite element analysis for slope stability of earth-rock dam under the action of stochastic seismic [J]. Journal of Hydraulic Engineering, 1999, (11): 66-71. [8] 王志华, 刘汉龙, 陈国兴. 平稳随机地震动模型及其在土石坝随机地震反应分析中的应用 [J]. 防灾减灾工程学报, 2006, (04): 389-94. WANG Zhihua, LIU Hanlong, CHEN Guoxing. Study on Stationary Stochastic Seismic Motion Model and Stochastic Earthquake response of earth-rock dam [J]. Journal of Disaster Prevention and Mitigation Engineering, 2006, (04): 389-94. [9] YEH C H, WEN Y K. Modeling of nonstationary ground motion and analysis of inelastic structural response [J]. Structural Safety, 1990, 8(1): 281-98. [10] 俞瑞芳, 曲国岩, 张冬锋. 空间相关多点非平稳地震动合成及其对大跨结构响应的影响 [J]. 振动工程学报, 2020, 33(05): 1013-23. YU Ruifang, QU Guoyan, ZHANG Dongfeng. Simulation of spatially correlated multipoint non-stationary ground motion and its influence on the response of long span structures [J]. Journal of Vibration Engineering, 2020, 33(05): 1013-23. [11] 庞锐. 高面板堆石坝随机动力响应分析及基于性能的抗震安全评价 [D]. 大连:大连理工大学, 2019. PANG Rui. Stochastic dynamic response analysis and performance-basedseismic safety evaluation of High Concrete Faced Rockfill Dam [D]. Dalian: Dalian University of Technology, 2019. [12] 李英成, 陈清军. 地震动非平稳性对深覆盖场地地震反应的影响 [J]. 土木工程学报, 2010, 43(S1): 1-5. LI Yingcheng, CHEN Qingjun. Effect of ground motion non-stationarity on the seismic response of soil layer with deep deposit [J]. China Civil Engineering Journal, 2010, 43(S1): 1-5. [13] 庞锐, 孔宪京, 邹德高等. 基于MSA法的高心墙堆石坝地震沉降易损性分析 [J]. 水利学报, 2017, 48(07): 866-73. PANG Rui, KONG Xianjing, ZOU Degao, et al. Seismic subsidence fragility analysis of high CRFDs based on MSA [J]. Journal of Hydraulic Engineering, 2017, 48(07): 866-73. [14] 李杰,陈建兵.随机结构动力反应分析的概率密度演化方法[J].力学学报,2003(04):437-442. LI Jie, CHEN Jianbing. Probability Density Evolution Method for Analysis of Stochastic Structural Dynamic Response [J]. Chinese Journal of Theoretical and Applied Mechanics, 2003(04):437-442. [15] DEODATIS G. Non-stationary stochastic vector processes: seismic ground motion applications [J]. Probabilistic Engineering Mechanics, 1996, 11(3): 149-67. [16] PANG R, XU B, KONG X J, et al. Seismic performance evaluation of high CFRD slopes subjected to near-fault ground motions based on generalized probability density evolution method [J]. Engineering Geology, 2018, 246: 391-401. [17] CACCIOLA P, DEODATIS G. A method for generating fully non-stationary and spectrum-compatible ground motion vector processes [J]. Soil Dynamics & Earthquake Engineering, 2011, 31(3): 351-60. [18] 刘章军, 刘子心. 基于规范反应谱的全非平稳地震动过程模拟 [J]. 振动工程学报, 2017, 30(03): 457-65. LIU Zhangjun, LIU Zixin. Simulation of fully non-stationary ground motion based on seismic design response spectrum [J]. Journal of Vibration Engineering, 2017, 30(03): 457-65. [19] 刘章军, 方兴. 平稳地震动过程的随机函数-谱表示模拟 [J]. 振动与冲击, 2013, 32(24): 6. LIU Zhangjun, Fang Xing. Simulation of stationary ground motion with random functions and spectral representation [J]. Journal of Vibration and Shock, 2013, 32(24): 6. [20] 方开泰,王元著. 数论方法在统计中的应用[M].北京:科学出版社,1996 FANG Kaitai, WANG Yuan. Number-theoretic Methods in Statistics Chapman and Hall [M]. Beijing: Science Press, 1996. [21] 沈怀至, 金峰, 张楚汉. 基于性能的重力坝-地基系统地震易损性分析 [J]. 工程力学, 2008, 25(12): 86-91. SHEN Huaizhi, JIN Feng, ZHANG Chuhan. Performance-based seismic fragility analysis of concrete gravity-foundation system [J]. Engineering Mechanics, 2008, 25(12): 86-91. [22] 李杰,陈建兵.概率密度演化理论的若干研究进展[J].应用数学和力学,2017,38(01):32-43+2. LI Jie, CHEN Jianbing. Some New Advances in the Probability Density Evolution Method [J]. Applied Mathematics and Mechanics, 2017,38(01):32-43+2. [23] 杨正权, 赵剑明, 刘小生等. 超深厚覆盖层上土石坝动力分析边界处理方法研究 [J]. 土木工程学报, 2016, 49(S2): 138-43. YANG Zhengquan, ZHAO Jianming, LIU Xiaosheng, et al. Study on boundary processing method for dynamic analysis of earth-rock fill dam on super-deep overburden layer [J]. China Civil Engineering Journal, 2016, 49(S2): 138-43. [24] 殷宗泽. 土工原理 [M]. 北京:中国水利水电出版社,2007. YIN Zongze. Principles of Geotechnical Engineering [M]. Beijing: China Water & Power Press, 2007 [25] 沈珠江,徐刚. 堆石料的动力变形特性 [J]. 水利水运科学研究, 1996, (02): 143-50. SHEN Zhujiang, XU Gang. Deformation behavior of rock materials under cyclic loading [J]. Hydro-Science and Engineering, 1996, (02): 143-50. [26] 邹德高, 孟凡伟, 孔宪京等. 堆石料残余变形特性研究 [J]. 岩土工程学报, 2008, (06): 807-12. ZOU Degao, MENG Fanwei, KONG Xianjing, et al. Residual deformation behavior of rock-fill materials [J]. Chinese Journal of Geotechnical Engineering, 2008, (06): 807-12. [27] 陈生水, 李国英, 傅中志. 高土石坝地震安全控制标准与极限抗震能力研究 [J]. 岩土工程学报, 2013, 35(01): 59-65. SHEN Shengshui, LI Guoying, FU Zhongzhi. Safety criteria and limit resistance capacity of high earth-rock dams subjected to earthquakes [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(01): 59-65. [28] 王笃波, 刘汉龙, 于陶. 基于变形的土石坝地震风险分析 [J]. 岩土力学, 2012, 33(05): 1479-84. WANG Dubo, LIU Hanlong, YU Tao. Seismic risk analysis of earth-rock dam based on deformation [J]. Rock and Soil Mechanics, 2012, 33(05): 1479-84. [29] 靳聪聪, 迟世春, 聂章博. 基于地震变形易损性的高土石坝抗震安全分析 [J]. 岩土工程学报, 2020, 42(02): 334-43. JIN Congcong, CHI Shichun, NIE Zhangbo. Seismic safety analysis of high earth-rockfill dams based on seismic deformational fragility [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(02): 334-43. [30] ANDERSON T W, DARLING D A. A Test of Goodness of Fit [J]. Publications of the American Statistical Association, 1954, 49(268): 765-9.

PDF(4138 KB)

Accesses

Citation

Detail

段落导航
相关文章

/