高应变率下钻孔煤样冲击破坏试验及数值研究

张寅1,尹立冬1,代连朋2,张季平1,李家俊1,杨晨晨1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (9) : 309-320.

PDF(6545 KB)
PDF(6545 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (9) : 309-320.
论文

高应变率下钻孔煤样冲击破坏试验及数值研究

  • 张寅1,尹立冬1,代连朋2,张季平1,李家俊1,杨晨晨1
作者信息 +

Test and numerical study on impact failure of drilling coal samples under high strain rate

  • ZHANG Yin1,YIN Lidong1, DAI Lianpeng2, ZHANG Jiping1, LI Jiajun1, YANG Chenchen1
Author information +
文章历史 +

摘要

煤层钻孔是防治冲击地压常用的一种简单、经济和有效的降冲减灾手段。针对冲击地压发生后高应变率加载显现,揭示钻孔煤岩的冲击破坏物理过程及其减灾机制对于定量化设计煤层钻孔参数意义重大。为研究高应变率下钻孔对煤样力学性质的影响,通过室内SHPB试验及颗粒流数值模拟对预制孔煤样进行冲击试验。实验结果表明:高应变率加载下钻孔对煤样的动态抗压强度具有显著的弱化作用,随钻孔数目的增加,煤岩动态抗压强度分别下降11.9%、20.4%、23.2%;随钻孔间距的增加,动态抗压强度分别下降20.4%、14.9%、8.5%、16.4%。含钻孔煤样应力-应变曲线存在应力跌落现象与塑性耗能平台期,应力跌落范围与塑性平台范围随孔数目的增加呈上升趋势。高应变率加载下钻孔对煤样的破坏具有明显的变形局部化引导作用,煤岩破坏时,初始主裂纹于平行加载方向的孔边拉应力区产生,次裂纹垂直主裂纹方向,孔间裂纹于孔桥间产生。应力集中区随孔桥破碎重新分布,孔边承载区远离钻孔。钻孔后煤样的AE事件数峰值出现不同程度的后移,当L≤2.5d时,AE事件分布呈双峰特征,L>2.5d时,AE事件分布呈单峰特征。

Abstract

Coal seam drilling is a simple, economical and effective means of impact damage reduction and mitigation. In view of the high strain rate loading after the occurrence of impact pressure, revealing the physical process of impact damage of drilled coal rock and its mitigation mechanism is of great significance for quantitatively designing the parameters of coal seam drilling. In order to study the influence of boreholes under high strain rates on the mechanical properties of coal samples, impact tests were carried out on prefabricated borehole coal samples through indoor SHPB tests and numerical simulation of particle flow. The experimental results show that borehole under high strain rate loading has a significant weakening effect on the dynamic compressive strength of coal samples, with the increase of the number of boreholes, the dynamic compressive strength of coal rock decreases by 11.9%, 20.4%, and 23.2%, respectively; and with the increase of the spacing of drilling holes, the dynamic compressive strength decreases by 20.4%, 14.9%, 8.5%, and 16.4%, respectively. The stress-strain curves of coal samples containing drill holes have a stress drop phenomenon and plastic energy consumption platform period, and the stress drop range and plastic platform range show an upward trend with the increase of the number of holes. The destruction of coal samples by borehole under high strain rate loading has obvious deformation localization guiding effect; when the coal rock is destroyed, the initial primary cracks are generated in the tensile stress area of the hole edge in the parallel loading direction, the secondary cracks are perpendicular to the direction of the primary cracks, and the inter-hole cracks are generated in the inter-hole bridges. The stress concentration zone redistributes with the breakup of the hole bridges, and the hole-side bearing zone is far away from the borehole. The peaks of AE event numbers of coal samples after drilling showed different degrees of backward shift, and the distribution of AE events was characterized by bimodal peaks when L≤2.5d, and single peaks when L>2.5d.

关键词

高应变率 / SHPB / 颗粒流 / 裂纹扩展

Key words

high strain rate / SHPB / particle flow / crack propagation

引用本文

导出引用
张寅1,尹立冬1,代连朋2,张季平1,李家俊1,杨晨晨1. 高应变率下钻孔煤样冲击破坏试验及数值研究[J]. 振动与冲击, 2024, 43(9): 309-320
ZHANG Yin1,YIN Lidong1, DAI Lianpeng2, ZHANG Jiping1, LI Jiajun1, YANG Chenchen1. Test and numerical study on impact failure of drilling coal samples under high strain rate[J]. Journal of Vibration and Shock, 2024, 43(9): 309-320

参考文献

[1] 窦林名,田鑫元,曹安业,等. 我国煤矿冲击地压防治现状与难题[J]. 煤炭学报, 2022, 47(1): 152-171. DOU Lin-ming, TIAN Xin-yuan, CAO Anye, et al. Present situation and problems of coal mine rock burst prevention and control in China[J]. Journal of China Coal Society, 2022, 47 (1): 152-171. [2] 王存文,姜福兴,孙庆国,等. 基于覆岩空间结构理论的冲击地压预测技术及应用[J]. 煤炭学报, 2009, 34(2): 150-155. WANG Cun-wen, JIANG Fu-xing, SUN Qing-guo, et al. The forecasting method of rock-burst and the application based on overlying multi-strata spatial structure theory [J]. Journal of China Coal Society, 2009, 34 (2): 150-155. [3] 何满潮. 深部的概念体系及工程评价指标[J]. 岩石力学与工程学报, 2005, (16): 2854-2858. HE Man-chao. Conception system and evaluation indexes for deep engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, (16): 2854-2858. [4] 刘冬桥,刘赫赫,王炀,等. 钻孔卸压防治岩爆实验及破坏特征研究[J]. 岩石力学与工程学报, 2023, 42(1): 100-114. LIU Dong-qiao, LIU He-he, WANG Yang, et al. Experiment study on drilling pressure relief for rockburst prevention and its failure characteristics [J]. Chinese Journal of Rock Mechanics and Engineering, 2023,42 (1): 100-114. [5] 高永涛,周兴国,吴顺川,等. 深埋隧道白云岩试样岩爆模拟实验研究[J]. 北京科技大学学报, 2010, 32(7): 819-826, 832. GAO Yong-tao, ZHOU Xing-guo, WU Shun-chuan, et al. Simulation experimental investigation on rockburst of dolomite specimens at great depth tunnels [J]. Journal of University of Science and Technology Beijing, 2010, 32 (7): 819-826, 832. [6] 潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报, 2018, 43(8): 2091-2098. AN Yi-shan. Disturbance response instability theory of rockburst in coal mine [J]. Journal of China Coal Society, 2018, 43 (8): 2091-2098. [7] 何满潮,谢和平,彭苏萍,等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005, (16): 2803-2813. HE Man-chao, XIE He-ping, PENG Su-ping, et al. Study on Rock mechanics in Deep Mining engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, (16): 2803-2813. [8] 康红普,王金华,林健. 高预应力强力支护系统及其在深部巷道中的应用[J]. 煤炭学报, 2007, 159(12): 1233-1238. KANG Hong-pu, WANG Jin-hua, LIN Jian. High pretensioned stress and intensive bolting system and its application in deep roadways [J]. Journal of Coal Science, 2007, 159 (12): 1233-1238. [9] 潘一山,代连朋. 煤矿冲击地压发生理论公式[J]. 煤炭学报, 2021, 46(3): 789-799. PAN Yi-shan, DAI Lian-peng. Theoretical formula for occurrence of Rock burst in coal mine [J] Journal of China Coal Society, 2021, 46 (3): 789-799. [10] 曹安业,窦林名,白贤栖,等. 我国煤矿矿震发生机理及治理现状与难题[J]. 煤炭学报, 2023, 48(5): 1894-1918. CAO An-ye, DOU Lin-ming, BAI Xian-qi, et al. State-of-the-art occurrence mechanism and hazard control of mining tremors andtheir challenges in Chinese coal mines [J] Journal of China Coal Society, 2023, 48 (5): 1894-1918. [11] 王登科,刘淑敏,魏建平,等. 冲击载荷作用下煤的破坏特性试验研究[J]. 采矿与安全工程学报, 2017, 34(3): 594-600. WANG Deng-ke, LIU Shu-min, WEI Jian-ping, et al. The failure characteristics of coal under impact load in laboratory [J]. Journal of Mining & Safety Engineering, 2017, 34 (3): 594-600.. [12] 李明,茅献彪,曹丽丽,等. 高应变率下煤力学特性试验研究[J]. 采矿与安全工程学报, 2015, 32(2): 317-324. LI Ming, MAO Xian-biao, CAO Li-li, et al. Experimental study on mechanical properties of coal under high strain rate [J]. Journal of Mining & Safety Engineering, 2015, 32 (2): 317-324. [13] Xiangguo Kong,Shugang Li,Enyuan Wang, et al. Dynamics behaviour of gas-bearing coal subjected to SHPB tests[J]. Composite Structures, 2021, 256: 113088. [14] Xiangguo Kong,Enyuan Wang,Shugang Li, et al. Dynamic mechanical characteristics and fracture mechanism of gas-bearing coal based on SHPB experiments[J]. Theoretical and Applied Fracture Mechanics, 2020, 105: 102395. [15] 王磊,袁秋鹏,谢广祥,等. 冲击载荷下煤样能量耗散与破碎分形的长径比效应[J]. 煤炭学报, 2022, 47(4): 1534-1546. WAN Lei, YUAN Qiu-peng, XIE Guang-xiang, et al. Length⁃diameterratioeffectofenergydissipationandfractalsofcoalsamplesunderimpactloading [J]. Journal of China Coal Society, 2022, 47 (4): 1534-1546. [16] 翟新献,翟俨伟,刘勤裕,等. 冲击作用下含水煤样能量吸收和耗散规律及本构关系研究[J]. 振动与冲击, 2023, 42(6): 202-211. ZHAI Xin-xian, ZHAI Yan-wei, LIU Qin-yu, et al. Energy absorption and dissipation and the constitutive relation of water-bearing coal specimens under impact load [J]. Journal of Vibration and Shock, 2023, 42(6): 202-211. [17] 王磊,邹鹏,焦振华,等. 冲击载荷下两种应变率作用方式煤岩能量演化及分形特征研究[J]. 振动与冲击, 2022, 41(14): 280-289. WANG Lei, ZOU Peng, JIAO Zhen-hua, et al. Energy evolution and fracture characteristics of coal androck under impact load with two kinds of strain rate action modes [J]. Journal of Vibration and Shock, 2022, 41 (14): 280-289. [18] 焦振华,姜耀东,赵毅鑫,等. 侧限约束冲击载荷下煤样能量耗散与损伤特征[J]. 中国矿业大学学报, 2023, 52(3): 492-501. JIAO Zhen-hua, JIANG Yao-dong, ZHAO Yi-xin, et al. Energy dissipation and damage characteristics of lateral- restraintcoal under impact load [J]. Journal of China University of Mining &Technology, 2023,52 (3): 492-501. [19] 唐礼忠,宋徉霖. 含非共面重叠型微裂隙类岩石试样单轴受压宏细观力学特性颗粒流模拟[J]. 岩石力学与工程学报, 2019, 38(11): 2161-2171. TANG Li-zhong, SONG Yan-lin. Particle flow simulation of macro- and meso-mechanical properties of uniaxially compressed rock-like specimens with non-coplanar overlapping flaws [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (11): 2161-2171. [20] 穆 康,俞缙,李宏,等. 水-力耦合条件下砂岩声发射和能量耗散的颗粒流模拟[J]. 岩土力学, 2015, 36(5): 1496-1504. MU Kang, YU Jin, LI Hong, et al. Acoustic emission of sandstone with hydro-mechanical couplingand PFC-based modelling of energy dissipation [J]. Rock and Soil Mechanics, 2015, 36 (5): 1496-1504. [21] 罗忆,曾芙翎,王刚,等. 基于颗粒流的节理岩体动态力学特性研究[J]. 爆破, 2020, 37(4): 18-24, 68. LUO Yi, ZENG Fu-ling, WANG Gang, et al. Dynamic mechanical properties analysis of jointed rock mass based on particle flow simulation [J]. Blasting, 2020, 37 (4): 18-24, 68. [22] 石浩,张后全,宋雷,等. 动载下含预制裂纹砂岩的力学特性及破裂过程研究[J]. 振动与冲击, 2023, 42(4): 28-38. SHI Hao, ZHANG Hou*quan, SONG Lei, et al. A study on mechanical properties and fracture process of sandstone withprefabricated cracks under dynamic loading [J]. Journal of Vibration and Shock, 2023, 42 (4): 28-38. [23] 张涛,蔚立元,鞠明和,等. 基于PFC3D-GBM的晶体–单元体尺寸比对花岗岩动态拉伸特性影响分析[J]. 岩石力学与工程学报, 2022, 41(3): 468-478. ZHANG Tao, WEI Li-yuan, JU Ming-he, et al. Study on the effect of grain size-particle size ratio on the dynamic tensile properties of granite based on PFC3D-GBM [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41 (3): 468-478. [24] 付玉凯,解北京,王启飞. 煤的动态力学本构模型[J]. 煤炭学报, 2013, 38(10): 1769-1774. FU Yu-kai, XIE Bei-jing, WANG Qi-fei. Dynamic mechanical constitutive model of the coal [J]. Journal of China Coal Society, 2013, 38 (10): 1769-1774. [25] Lihai Tan,Ting Ren,Xiaohan Yang, et al. A numerical simulation study on mechanical behaviour of coal with bedding planes under coupled static and dynamic load[J]. International Journal of Mining Science and Technology, 2018, 28: 791-797. [26] ZHOU Zi-long, SUN Jing-nan, WANG Hai-quan, et al. Dynamic behavior of rock during its post failure stage in SHPB tests [J]. Transactions of Nonferrous Metals Society of China, 2021, 52 (3): 681-692. [27] 朱谭谭,靖洪文,苏海健,等. 含双圆形孔洞砂岩单轴压缩力学特性试验研究[J]. 岩土工程学报, 2015, 37(6): 1047-1056. ZHU Tan-tan, JING Hong-wen, SU Haijian, et al. Mechanical behavior of sandstone containing double circular cavities under uniaxial compression [J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (6): 1047-1056.

PDF(6545 KB)

Accesses

Citation

Detail

段落导航
相关文章

/