柔顺宏微操作系统动力学建模及振动抑制研究

翁寅祥1,杨依领1,吴高华1,崔玉国1,魏燕定2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (9) : 69-76.

PDF(2544 KB)
PDF(2544 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (9) : 69-76.
论文

柔顺宏微操作系统动力学建模及振动抑制研究

  • 翁寅祥1,杨依领1,吴高华1,崔玉国1,魏燕定2
作者信息 +

Dynamic modeling and vibration suppression of flexible macro-micro manipulator system

  • WENG Yinxiang1, YANG Yiling1, WU Gaohua1, CUI Yuguo1, WEI Yanding2
Author information +
文章历史 +

摘要

针对高速大范围宏运动时柔顺微操作器的微纳振动问题,建立系统动力学模型并设计改进离散滑模控制策略对微观弹性振动进行抑制。首先以气浮宏动平台和压电纤维微操作器构成的宏微操作系统为对象,结合假设模态法、拉格朗日方程和非对称迟滞模型,建立系统综合机电动力学模型。然后,在所建模型基础上设计变速趋近律调节切换增益,从而实现非线性离散滑模控制。最终搭建宏微操作系统测控平台,并进行轨迹跟踪和振动抑制实验。在轨迹跟踪时,对于不同频率的正弦参考轨迹,所设计的控制策略均能精确跟踪给定信号且误差较小;在振动抑制时,当宏动平台沿梯形与S轨迹运动时,微操作器残余振动稳定时间比改进前分别减少26.1%和50.0%,比无控制时分别缩短53.6%和53.3%。验证了动力学模型与离散滑模控制的有效性,提高了系统控制精度与效率。

Abstract

Regarding the problem of micro-nano vibration of the flexible micromanipulator during high-speed and large-range macro motion, a system dynamics model is established, and an improved discrete sliding mode control strategy is designed to suppress micro-elastic vibration. Firstly, a comprehensive mechatronic dynamics model is established by combining the assumed modal method, Lagrange equation, and asymmetric hysteresis model for the macro-micro manipulation system composed of an air-floating macro-motion platform and a piezoelectric fiber micromanipulator. After that, a discrete sliding mode control strategy with nonlinear adaptive characteristics is implemented by regulating the switching gain with a variable-speed convergence law based on the proposed model. Finally, a measurement and control platform for the macro-micro manipulation system is built, and the trajectory tracking and vibration suppression experiments are conducted. In trajectory tracking, the designed control strategy can accurately track the given signal with minor errors for different frequencies of sinusoidal reference trajectories. During vibration suppression, the residual vibration stabilization time of the micromanipulator was reduced by 26.1% and 50.0% compared to the pre-improvement period when the macro-actuated platform was moving along the trapezoidal versus the S-trajectory and 53.6% and 53.3% compared to the no-control period, respectively. The effectiveness of the dynamics model and discrete sliding mode control is verified, and the control accuracy and efficiency of the system are improved.

关键词

宏微操作系统 / 动力学建模 / 振动抑制 / 压电驱动 / 滑模控制

Key words

macro-micro manipulator / dynamics modeling / vibration suppression / piezoelectric actuation / sliding mode control

引用本文

导出引用
翁寅祥1,杨依领1,吴高华1,崔玉国1,魏燕定2. 柔顺宏微操作系统动力学建模及振动抑制研究[J]. 振动与冲击, 2024, 43(9): 69-76
WENG Yinxiang1, YANG Yiling1, WU Gaohua1, CUI Yuguo1, WEI Yanding2. Dynamic modeling and vibration suppression of flexible macro-micro manipulator system[J]. Journal of Vibration and Shock, 2024, 43(9): 69-76

参考文献

[1] ZHANG L, LI X, FANG J, et al. Vibration isolation of extended ultra-high acceleration macro–micro motion platform considering floating stator stage[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20: 1265-1287. [2] PENNY H, HAYMAN D T S, AVCI E. Micromanipulation system for isolating a single cryptosporidium oocyst[J]. Micromachines, 2019,11(1): 3. [3] LIN J, QI C, GAO F, et al. Integration modeling and control of a 12-degree-of-freedom macro–micro dual parallel manipulator[J]. Part C: Journal of Mechanical Engineering Science, 2022, 236(11): 6064-6076. [4] Xu Q. Robust impedance control of a compliant microgripper for high-speed position/force regulation [J]. IEEE Transactions on Industrial Electronics, 2015, 62(2): 1201-1209. [5] YANG Y, WEI Y, LOU J, et al. Dynamic modeling and adaptive vibration suppression of a high-speed macro-micro manipulator[J]. Journal of Sound and Vibration, 2018, 422: 318-342. [6] 彭剑, 张改, 胡霞, 等. 压电弹性梁主共振响应的时滞加速度反馈控制[J]. 振动与冲击, 2016, 35(24): 1-5. PENG Jian, ZHANG Gai, HU Xia, et al. Time-delayed acceleration feedback control of primary resonance of piezoelectric elastic beams[J]. Journal of Vibration and Shock, 2016, 35(24): 1-5. [7] MENG T T, HE W. Iterative learning control of a robotic arm experiment platform with input constraint[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 664-672. [8] 康建云, 毕果, 苏史博. 压电柔性机械臂系统辨识与振动主动控制[J]. 振动, 测试与诊断, 2021, 41(1): 90-95. KANG Jianyun, BI Guo, SU Shibo. Experimental Identification and Active Vibration Controlof Piezoelectric Flexible Manipulator [J]. Journal of Vibration and Shock, 2021, 41(1): 90-95. [9] XU W, CAO L, PENG B, et al. Adaptive nonsingular fast terminal sliding mode control of aerial manipulation based on nonlinear disturbance observer[J]. Drones, 2023, 7(2): 88. [10] 卢荣华,陈特欢,娄军强,崔玉国. MFC致动器的动态迟滞模型辨识及补偿控制[J]. 振动与冲击, 2022, 41(10): 301-308. LU Ronghua, CHEN Tehuan, LOU Junqiang, CUI Yuguo. Identification and compensation control of the dynamic hysteresis model of MFC actuators. Journal of Vibration and Shock, 2022, 41(10): 301-308. [11] CHEN L Q, WU X H, SUN Q, et al. Experimental study on the electromechanical hysteresis property of macro fiber composite actuator[J]. International Journal of Acoustics and Vibrations, 2017, 22(4): 467-480. [12] Qiu Z. Adaptive nonlinear vibration control of a Cartesian flexible manipulator driven by a ballscrew mechanism[J]. Mechanical Systems and Signal Processing, 2012, 30: 248-266. [13] 邱志成, 李城. 双连杆柔性机械臂振动主动控制与实验[J]. 振动. 测试与诊断, 2019, 39(3): 503-511. QIU Zhicheng, LI Cheng. Experimental Study on Two-Link Rigid-Flexible Manipulator Vibration Control[J]. Journal of Vibration,Measurement & Diagnosis, 2019, 39(3): 503-511. [14] 刘屿, 付云, 刘伟东等. 柔性卫星系统的振动自适应边界控制[J]. 控制理论与应用, 2018, 35(07): 973-980. LIU Yu, FU Yun, LIU Wei-dong, et al. Adaptive vibration boundary control for a flexible satellite system[J]. Control Theory and Technology, 2018, 35(7): 973-980. [15] WANG S, YANG Y L, LI G P, et al. Microscopic vibration suppression for a high-speed macro-micro manipulator with parameter perturbation[J]. Mechanical Systems and Signal Processing, 2022, 179: 109332. [16] LI D, ZHANG F, SUN L, et al. Design and fabrication of micromanipulation tools for electrochemical-based manipulation of metal microcomponents[J]. Microsystem Technologies, 2022, 28(9): 2071-2081. [17] SU Y, ZHENG C. A new nonsingular integral terminal sliding mode control for robot manipulators[J]. International Journal of Systems Science, 2020, 51(8): 1418-1428. [18] CHENG P, WANG H, STOJANOVIC V, et al. Asynchronous fault detection observer for 2-D Markov jump systems[J]. IEEE Transactions on Cybernetics, 2021, 52(12): 13623-13634. [19] KANG S, WU H, YANG X, et al. Discrete-time predictive sliding mode control for a constrained parallel micropositioning piezostage[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52(5): 3025-3036. [20] BARTOSZEWICZ A, ADAMIAK K. Discrete-time sliding-mode control with a desired switching variable generator[J]. IEEE Transactions on Automatic Control, 2019, 65(4): 1807-1814. [21] MA H F, LI Y M, XIONG Z H. Discrete-time sliding-mode control with enhanced power reaching law[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4629–4638. [22] RUBAGOTTI M, INCREMONA G P, RAIMONDO D M, et al. Constrained nonlinear discrete-time sliding mode control based on a receding horizon approach[J]. IEEE Transactions on Automatic Control, 2020, 66(8): 3802-3809.

PDF(2544 KB)

Accesses

Citation

Detail

段落导航
相关文章

/