基于CUF理论的旋转轴自由振动特性分析

何从帅1,朱军超1,2,华宏星2,辛大款1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (9) : 77-83.

PDF(2042 KB)
PDF(2042 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (9) : 77-83.
论文

基于CUF理论的旋转轴自由振动特性分析

  • 何从帅1,朱军超1,2,华宏星2,辛大款1
作者信息 +

Free vibration characteristics analysis for rotating shaft based on CUF theory

  • HE Congshuai1, ZHU Junchao1,2, HUA Hongxing2, XIN Dakuan1
Author information +
文章历史 +

摘要

基于卡雷拉统一定理(Carrera unified formulation,CUF)建立了经典边界条件下旋转轴的动力学分析模型。利用CUF框架,将完整的三维动力学模型简化为具有三维求解精度的二维动力学模型。旋转轴的位移场利用二维泰勒公式和改进傅里叶级数进行构建,边界条件则采用罚函数法进行处理,然后结合能量泛函和Hamilton原理对其振动特性进行求解。通过与有限元结果进行对比,验证了此方法的有效性和正确性。在此基础上,研究了边界罚函数因子、几何参数和旋转速度等参数对旋转轴振动特性的影响。该方法具有高效和高精度等特点,为研究旋转轴的振动特性提供了有效的分析手段。

Abstract

This work presented a dynamic analysis model for the rotational shaft under classical boundary conditions, based on Carrera unified formulation (CUF). Utilizing the CUF framework, the complete 3D dynamic model was simplified to a 2D dynamic model while maintaining 3D solution accuracy. The displacement field of the rotational shaft was constructed using two-dimensional Taylor polynomials and improved Fourier series. The boundary conditions were handled through the penalty function method, and the vibration characteristics were solved using energy functionals and Hamilton principle. The effectiveness and correctness of this method were verified by comparing it with finite element results. Furthermore, the study investigated the impact of the boundary penalty function factor, geometric parameters, and rotational speed on the vibration characteristics of the rotational shaft. The proposed method exhibits high efficiency and precision, offering an effective approach to analyze the vibration characteristics of rotational shaft.

关键词

卡雷拉统一定理 / 旋转轴 / 罚函数法 / 振动分析

Key words

Carrera unified formulation / rotational shaft / penalty function method / vibration analysis

引用本文

导出引用
何从帅1,朱军超1,2,华宏星2,辛大款1. 基于CUF理论的旋转轴自由振动特性分析[J]. 振动与冲击, 2024, 43(9): 77-83
HE Congshuai1, ZHU Junchao1,2, HUA Hongxing2, XIN Dakuan1. Free vibration characteristics analysis for rotating shaft based on CUF theory[J]. Journal of Vibration and Shock, 2024, 43(9): 77-83

参考文献

[1] 赵雨皓,杜敬涛,许得水.轴向载荷条件下弹性边界约束梁结构振动特性分析[J]. 振动与冲击,2020, 39(15): 109-117. ZHAO Yuhao, DU Jingtao, XU Deshui. Vibration characteristics analysis for an axially loaded beam with elastic boundary restraints [J]. Journal of Vibration and Shock, 2020, 39(15): 109-117. [2] ABBAS B A H. Vibration of Timoshenko beams with elastically restrained ends [J]. Journal of Sound and Vibration, 1984, 97(4): 541-548. [3] 鲍四元,曹津瑞,周静.任意弹性边界下非局部梁的横向振动特性研究[J]. 振动工程学报,2020, 33(2): 276-284. BAO Siyuan, CAO Jinrui, ZHOU Jing. Transverse vibration characteristics of nonlocal beams with arbitrary elastic boundary conditions [J]. Journal of Vibration Engineering, 2020, 33(2): 276-284. [4] CHEN Q, DU JT. A Fourier series solution for the transverse vibration of rotating beams with elastic boundary supports [J]. Applied Acoustics, 2019, 155: 1-15. [5] 张海波,夏鸿建,李德源,等. 基于绝对节点坐标法的三维柔性旋转梁动力特性分析[J]. 广东工业大学学报,2022, 39(02): 76-83. Zhang Haibo, Xia Hongjian, Li Deyuan, et al. A Dynamic Characteristics Analysis of 3D Flexible Rotating Beam Based on Absolute Node Coordinate Formulation [J]. Journal of Guangdong University of Technology, 2022, 39(02): 76-83. [6] 林位麒,杨宇康,林百川,等. .功能梯度石墨烯增强复合材料旋转梁强迫振动[J]. 四川轻化工大学学报(自然科学版),2023, 36(03): 42-49. LIN Weiqi, YANG Yukang, LIN Baichuan, et al. Forced Vibration of Functionally Graded Graphene-platelets- reinforced Composite Rotating Beams [J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2023, 36(03): 42-49. [7] YAYLI M O. Free vibration analysis of a rotationally restrained (FG) nanotube [J]. Microsystem Technologies, 2019, 25(10): 3723-3734. [8] 丁相玉. 水平旋转梁的自由振动分析[J]. 海峡科技与产业,2015(10): 92-95. Ding Xiangyu. Free vibration analysis of horizontal rotating beam [J]. Technology and Industry Across the Straits, 2015(10): 92-95. [9] NIE R, LI T Y, ZHU X, et al. A general Fourier formulation for in-plane and out-of-plane vibration analysis of curved beams [J]. Shock and Vibration, 2021, 2021: 5511884. [10] E. Carrera, G. Giunta.Hierarchical Evaluation of Failure Parameters in Composite Plates[J].AIAA Journal, 2009, 47(3): 692-702. [11] Carrera, Giunta. Exact, Hierarchical Solutions for Localized Loadings in Isotropic, Laminated, and Sandwich Shells[J]. Journal of Pressure Vessel Technology, 2009, 131(4): 0412021-04120214. [12] E. Carrera, M. Petrolo, P. Nali.Unified formulation applied to free vibrations finite element analysis of beams with arbitrary section[J].Shock and vibration, 2011, 18(3): 485-502. [13] Jin Guoyong, Chen Yukun, Li Shanjun, et al.Quasi-3D dynamic analysis of rotating FGM beams using a modified Fourier spectral approach[J]. International Journal of Mechanical Sciences, 2019, 163: 105087-105087. [14] Carrera E, M, et al. Vibration Analysis of Thin/Thick, Composites/Metallic Spinning Cylindrical Shells by Refined Beam Models[J]. Journal of Vibration and Acoustics, 2015, 137(3): 31020-31020. [15] Filippi M, Carrera E. Capabilities of 1D CUF-based models to analyse metallic/composite rotors[J]. Advances in aircraft and spacecraft science, 2016, 3(1): 1–14. [16] Carrera E, Filippi M. A refined one-dimensional rotor dynamics model with three-dimensional capabilities[J]. Journal of Sound and Vibration, 2016, 366: 343-356. [17] Hu Y, Zhao Y, Wang N, et al. Dynamic analysis of varying speed rotating pre-twisted structures using refined beam theories[J]. International Journal of Solids and Structures, 2020, 185-186.

PDF(2042 KB)

373

Accesses

0

Citation

Detail

段落导航
相关文章

/